1. B. Kaszás & G. Haller, Data-driven linearization of dynamical systems arXiv:2407.08177 (2024) [PDF]

  2. Z. Xu, R. S. Kaundinya, S. Jain & G. Haller, Nonlinear model reduction to random spectral submanifolds in random vibrations arXiv:2407.03677 (2024) [PDF]

  3. A. Yang, J. Axås, F. Kádár, G. Stépán & G. Haller, Modeling nonlinear dynamics from videos arXiv:2406.08893 (2024) [PDF]

  4. A. Encinas-Bartos, B. Kaszás, S. Servidio & G. Haller, Material barriers to the diffusion of the magnetic field arXiv:2405.15331 (2024) [PDF]

  5. M.Cenedese, J. Marconi, G. Haller & S. Jain, Data-assisted non-intrusive model reduction for forced nonlinear finite elements models arXiv:2311.17865 (2024) [PDF]

  6. T. Thurnher, G. Haller & S. Jain, Nonautonomous spectral submanifolds for model reduction of nonlinear mechanical systems under parametric resonance Chaos 34 (2024) 073127. [PDF]

  7. L. Bettini, M. Cenedese & G. Haller, Model reduction to spectral submanifolds in piecewise smooth dynamical systems International Journal of Non-Linear Mechanics 163 (2024) 1047. [PDF]

  8. Z. Xu, B. Kaszás, M. Cenedese, G. Berti, F. Coletti, G. Haller, Data-driven modeling of the regular and chaotic dynamics of an inverted flag from experiments J. Fluid Mech. 987 (2024) R7. [PDF]

  9. G. Haller, R. S. Kaundinya, Nonlinear model reduction to temporally aperiodic spectral submanifolds Chaos 34 (2024) 043152. [PDF]

  10. M. Li, S. Jain & G. Haller, Fast computation and characterization of forced response surfaces via spectral submanifolds and parameter continuation Nonlinear Dyn (2024) (Published online). [PDF]

  11. A. Liu, J. Axås & G. Haller, Data-driven modeling and forecasting of chaotic dynamics on inertial manifolds constructed as spectral submanifolds Chaos 34 (2024) 033140. [PDF]

  12. M. Li, B. Kaszás & G. Haller, Variational construction of tubular and toroidal streamsurfaces for flow visualization Proc. R. Soc. A 480 (2024) 20230951. [PDF]

  13. A.P. Encinas-Bartos & G. Haller, Vorticity alignment with Lyapunov vectors and rate-of-strain eigenvectors European Journal of Mechanics - B/Fluids 105 (2024) 259-274. [PDF]

  14. B. Kaszás & G. Haller, Capturing the edge of chaos as a spectral submanifold in pipe flows J. Fluid Mech. 979 (2024) A48.[PDF]

  15. 2023

  16. N. Aksamit, A.P. Encinas-Bartos, G. Haller & D.E. Rival, Relative fluid stretching and rotation for sparse trajectory observations (2023). [PDF]

  17. T. Thurnher, G. Haller & S. Jain, Nonautonomous spectral submanifolds for model reduction of nonlinear mechanical systems under parametric resonance (2023). (submitted to Chaos) [PDF]

  18. J.I. Alora, M. Cenedese, E. Schmerling, G. Haller & M. Pavone, Practical deployment of spectral submanifold reduction for optimal control of high-dimensional systems IFAC PapersOnLine 56-2 (2023) 4074-4081. [PDF]

  19. J.I. Alora, M. Cenedese, E. Schmerling, G. Haller & M. Pavone, Data-driven spectral submanifold reduction for nonlinear optimal control of high-dimensional robots 2023 IEEE International Conference on Robotics and Automation (ICRA), London, United Kingdom (2023) 2627-2633. [PDF]

  20. F. Mahlknecht, J.I. Alora, S. Jain, E. Schmerling, R. Bonalli, G. Haller & M. Pavone, Using spectral submanifolds for nonlinear periodic control 2022 IEEE 61st Conference on Decision and Control (CDC), Cancun, Mexico (2022) 6548-6555. [PDF]

  21. N. Aksamit, R. Hartmann, D. Lohse & G. Haller, Interplay between advective, diffusive, and active barriers in (rotating) Rayleigh-Bénard flow J. Fluid Mech. 969 (2023) A27. [PDF]

  22. J. Axås & G. Haller, Model reduction for nonlinearizable dynamics via delay-embedded spectral submanifolds Nonlinear Dyn (2023) (Published online). [PDF]

  23. G. Haller, B. Kaszás, A. Liu & J. Axås, Nonlinear model reduction to fractional and mixed-mode spectral submanifolds Chaos 33 (2023) 063138. [PDF]

  24. M. Li, S. Jain & G. Haller, Model reduction for constrained mechanical systems via spectral submanifolds Nonlinear Dyn 111 (2023) 8881–8911. [PDF]

  25. J. Axås, M. Cenedese & G. Haller, Fast data-driven model reduction for nonlinear dynamical systems Nonlinear Dyn 111 (2023) 7941–7957. [PDF]

  26. B. Kaszás, T. Pedergnana & G. Haller, The objective deformation component of a velocity field European Journal of Mechanics - B/Fluids 98 (2023) 211–223. [PDF]

  27. S. Katsanoulis, F. Kogelbauer, R. Kaundinya, J. Ault & G. Haller, Approximate streamsurfaces for flow visualization J. Fluid Mech. 954 (2023) A28. [PDF]

  28. Earlier Years

  29. A.P. Encinas Bartos, N.O.Aksamit & G. Haller, Quasi-objective eddy visualization from sparse drifter data Chaos 32 (2022) 113143. [PDF]

  30. B. Kaszás, M. Cenedese & G. Haller Dynamics-based machine learning of transitions in Couette flow Phys. Rev. Fluids 7 (2022) L082402.  [PDF] [Supplemental material]

  31. M. Li & G. Haller, Nonlinear analysis of forced mechanical systems with internal resonance using spectral submanifolds, Part II: Bifurcation and quasi-periodic response Nonlinear Dyn 110 (2022) 1045–1080.  [PDF]

  32. M. Li, S. Jain & G. Haller, Nonlinear analysis of forced mechanical systems with internal resonance using spectral submanifolds, Part I: Periodic response and forced response curve Nonlinear Dyn 110 (2022) 1005–1043.  [PDF]

  33. T. Breunung, F. Kogelbauer & G. Haller The deterministic core of stochastically perturbed nonlinear mechanical systems Proc. R. Soc. A 478 (2022) 20210933. [PDF]

  34. M. Cenedese, J. Axås, H. Yang, M. Eriten & G. Haller, Data-driven nonlinear model reduction to spectral submanifolds in mechanical systems Phil. Trans. R. Soc. A 380 (2022) 20210194 . [PDF]

  35. G. Haller, S. Jain & M. Cenedese Dynamics-based machine learning for nonlinearizable phenomena. Data-driven reduced models on spectral submanifolds SIAM News 55/5 (2022) 1-4. [PDF]

  36. G. Haller, N. Aksamit & A.P. Encinas-Bartos, Erratum: "Quasi-objective coherent structure diagnostics from single trajectories" [Chaos 31, 043131 (2021)] Chaos 32 (2022) 059901. [PDF]

  37. N.O. Aksamit & G. Haller, Objective momentum barriers in wall turbulence J. Fluid Mech. 941 (2022) A3.  [PDF]

  38. M. Cenedese, J. Axås, B. Bäuerlein, K. Avila & G. Haller, Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds Nat. Commun. 13 (2022) 872. [PDF]  [Supplementary information] 

  39. L. Martínez, P. Merino, G. Santoro, J.I. Martínez, S. Katsanoulis, … , G. Haller, G.J. Ellis & J.A. Martin-Gago, Metal-catalyst-free gas-phase synthesis of longchain hydrocarbons Nat. Commun. 12 (2021) 5937. [PDF]

  40. S. Jain & G. Haller, How to compute invariant manifolds and their reduced dynamics in high-dimensional finite-element models? Nonlinear Dyn (2021).  [PDF]

  41. N.O. Aksamit, B. Kravitz, D.G. MacMartin & G. Haller, Harnessing stratospheric diffusion barriers for enhanced climate geoengineering Chem. Phys. 21 (2021) 8845-8861.  [PDF]

  42. G. Buza, G. Haller & S. Jain, Integral equations and model reduction for fast computation of nonlinear periodic response Int. J. Numer. Methods Eng. 122 (2021) 4637-4659.  [PDF]

  43. G. Haller, N. Aksamit & A.P. Encinas Bartos, Quasi-objective coherent structure diagnostics from single trajectories Chaos 31 (2021) 043131. [PDF]

  44. G. Buza, S. Jain & G. Haller, Using spectral submanifolds for optimal mode selection in model reduction Proc. R. Soc. A 477 (2021) 20200725. [PDF]

  45. T. Dauxois, T. Peacock, P. Bauer, C.P. Caulfield, C. Cenedese, C. Gorlé, G. Haller, G.N. Ivey, P.F. Linden, E. Meiburg, N. Pinardi, N.M. Vriend & A.W. Woods, Confronting grand challenges in environmental fluid dynamics Phys. Rev. Fluids 6 (2021) 020501. [PDF]

  46. G. Haller, Can vortex criteria be objectivized? J. Fluid Mech. 908 (2021) A25. [PDF]

  47. B. Kaszás & G. Haller, Universal upper estimate for prediction errors under moderate model uncertainty Chaos 30 (2020) 113144. [PDF]

  48. G. Haller, S. Katsanoulis, M. Holzner, B. Frohnapfel & D. Gatti, Objective barriers to the transport of dynamically active vector fields J. Fluid Mech. 905 (2020) A17. [PDF]

  49. S. Ponsioen, S. Jain & G. Haller, Model reduction to spectral submanifolds and forced-response calculation in high-dimensional mechanical systems Journal of Sound and Vibration 488 (2020) 115640. [PDF]

  50. M. Cenedese & G. Haller, Stability of forced-damped response in mechanical systems from a Melnikov analysis Chaos 30 (2020) 083103. [PDF]

  51. M. Neamtu-Halic, D. Krug, J. Mollicone, M. van Reeuwijk, G. Haller & M. Holzner, Connecting the time evolution of the turbulence interface to coherent structures J. Fluid Mech. 898 (2020) A3. [PDF]

  52. M. Serra, P. Sathe, I. Rypina, A. Kirincich, S. Ross, P. Lermusiaux, A. Allen, T. Peacock & G. Haller, Search and rescue at sea aided by hidden flow structures  Nat. Commun. 11 (2020) 2525. [PDF]

  53. T. Pedergnana, D. Oettinger, G. P. Langlois & G. Haller, Explicit unsteady Navier-Stokes solutions and their analysis via local vortex criteria  Phys. Fluids 32 (2020) 046603. [PDF]

  54. N. Aksamit, T. Sapsis & G. Haller, Machine-learning mesoscale and submesoscale surface dynamics from Lagrangian ocean drifter trajectories J. Phys. Oceanogr. 50 (2020) 1179–1196. [PDF]

  55. S. Katsanoulis, M. Farazmand, M. Serra & G. Haller, Vortex boundaries as barriers to diffusive vorticity transport in two-dimensional flows Phys. Rev. Fluids 5 (2020) 024701. [PDF]

  56. M. Cenedese & G. Haller, How do conservative backbone curves perturb into forced responses? A Melnikov function analysis Proc. R. Soc. A 476 (2020) 20190494. [PDF]

  57. G. Haller, D. Karrasch & F. Kogelbauer, Barriers to the transport of diffusive scalars in compressible flows  SIAM J. on Appl. Dynamical Systems 19, 1 (2020) 85–123. [PDF]

  58. Z. Veraszto, S. Ponsioen & G. Haller,  Explicit third-order model reduction formulas for general nonlinear mechanical systems J. Sound Vib. 468 (2020) 115039. [PDF]

  59. M. Serra, S. Crouzat, G. Simon, J. Vétel & G. Haller, Material spike formation in highly unsteady separated flows J. Fluid Mech. 883 (2019) A30. [PDF]

  60. T. Breunung & G. Haller, When does a periodic response exist in a periodically forced multi-degree-of-freedom mechanical system?  Nonlinear Dynamics 98, 3 (2019) 1761-1780. [PDF]

  61. M. Neamtu-Halic, D. Krug, G. Haller & M. Holzner, Lagrangian coherent structures and entrainment near the turbulent/non-turbulent interface of a gravity current J. Fluid Mech. 877 (2019) 824-843. [PDF]

  62. G. Haller,  Solving the inertial particle equation with memory J. Fluid Mech. 874 (2019) 1-4. [PDF]

  63. S. Ponsioen, T. Pedergnana & G. Haller,  Analytic prediction of isolated forced response curves from spectral submanifolds Nonlinear Dynamics 98, 4 (2019) 2755-2773. [PDF]

  64. A. Sharma, I.I. Rypina, R. Musgrave & G. Haller, Analytic reconstruction of a two-dimensional velocity field from an observed diffusive scalar J. Fluid Mech. 871 (2019) 755-774. [PDF]

  65. S. Jain, T. Breunung, & G. Haller, Fast computation of steady-state response for high-degree-of-freedom nonlinear systems  Nonlinear Dynamics 97, 1 (2019) 313-341. [PDF]

  66. G. Haller, D. Karrasch & F. Kogelbauer, Material barriers to diffusive and stochastic transport. Proc. Natl. Acad. Sci. U.S.A., PNAS 115/37 (2018) 9074-9079. [PDF] [Supporting Information]

  67. D. Oettinger, J.T. Ault, H.A. Stone & G. Haller, Invisible anchors trap particles in branching junctions. Phys. Rev. Lett. 121(5) (2018) 054502. [PDF]

  68. T. Breunung & G. Haller, Explicit backbone curves from spectral submanifolds of forced-damped nonlinear mechanical systems. Proc. R. Soc. A 474 (2018) 20180083. [PDF]

  69. F. J. Beron-Vera, A. Hadjighasem, Q. Xia, M. J. Olascoaga & G. Haller, Coherent Lagrangian swirls among submesoscale motions. Proc. Natl. Acad. Sci. U.S.A. (2018) 201701392. [PDF] [Supporting information]

  70. M. Serra, J. Vétel & G. Haller, Exact theory of material spike formation in flow separation. 
    J. Fluid Mech. 845 (2018) 51-92. [PDF]

  71. S. Jain, P. Tiso & G. Haller, Exact nonlinear model reduction for a von Karman beam: Slow-fast decomposition and spectral submanifoldsJ. Sound Vib. 423 (2018) 195–211. [PDF]

  72. R. Abernathey & G. Haller, Transport by Lagrangian vortices in the Eastern Pacific
    J. Phys. Oceanogr. 48 (2018) 667-685. [PDF]

  73. F. Kogelbauer & G. Haller, Rigorous model reduction for a damped-forced nonlinear beam model: An infinite-dimensional analysis.J. Nonlinear Sci. 28(2018) 1109-1150.  [PDF]

  74. S. Ponsioen, T. Pedergnana & G. Haller, Automated computation of autonomous spectral submanifolds for nonlinear modal analysis. J. Sound Vib420 (2018) 269-295. [PDF]

  75. M. Serra, P. Sathe, F. Beron-Vera & G. Haller, Uncovering the edge of the polar vortex
    J. Atm. Sci74 (2017) 3871–3885. [PDF]

  76. G. Haller & S. Ponsioen, Exact model reduction by a slow-fast decomposition of nonlinear mechanical systemsNonlinear Dynamics 90 (2017) 617-647. [PDF]

  77. H. Babaee, M. Farazmand, G. Haller & T. Sapsis, Reduced-order description of transient instabilities and computation of finite-time Lyapunov exponentsChaos 27 (2017) 063103. [PDF]

  78. R. Szalai, D. Ehrhardt & G. Haller, Nonlinear model identification and spectral submanifolds for multi-degree-of-freedom mechanical vibrationsProc. Royal Soc. A 473 (2017) 20160759. [PDF]

  79. A. Hadjighasem, M. Farazmand, D. Blazevski, G. Froyland & G. Haller, A critical comparison of Lagrangian methods for coherent structure detectionChaos 27 (2017) 053104. [PDF] 

  80. M. Serra & G. Haller, Efficient computation of null geodesics with applications to coherent vortex detectionProc. Royal Soc. A 473 (2017) 20160807. [PDF]. Featured on the journal's cover page.

  81. M. Serra & G. Haller, Forecasting long-lived Lagrangian vortices from their objective Eulerian footprintsJ. Fluid. Mech. 813 (2017) 436-457. [PDF]

  82. E. L. Rempel, A. C.-L. Chian, F. J. Beron-Vera, S. Szanyi & G. Haller, Objective vortex detection in an astrophysical dynamoMonthly Notices of Roy. Astronom. Soc. 466 (2016) L108–L112. [PDF]

  83. S. Szanyi, J. V. Lukovich, D. G. Barber & G. Haller, Persistent artifacts in the NSIDC ice motion dataset and their implications for analysis.  Geophys. Res. Lett., 43 (2016) 10,800-10,807. [PDF] [Supporting Information]

  84. D. Oettinger & G. Haller, An autonomous dynamical system captures all LCSs in three-dimensional unsteady flowsChaos 26 (2016) 103111. [PDF]

  85. A. Hadjighasem & G. Haller, Level set formulation of two-dimensional Lagrangian vortex detection methodsChaos 26 (2016) 103102. [PDF]

  86. G. Haller & S. Ponsioen, Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reductionNonlinear Dynamics 86 (2016) 1493-1534. [PDF]

  87. G. Haller, Climate, Black Holes and Vorticity: How on Earth are they related? SIAM News49/5 (2016) 1-2. [Article]

  88. A. Hadjighasem, D. Karrasch, H. Teramoto, & G. Haller, Spectral clustering approach to Lagrangian vortex detectionPhys. Rev. E 93 (2016) 063107 [PDF]

  89. M. Serra & G. Haller, Objective Eulerian coherent structuresChaos26(2016) 053110. [PDF]

  90. D. Oettinger, D. Blazevski & G. Haller, Global variational approach to elliptic transport barriers in three dimensionsChaos 26(2016) 033114. [PDF]

  91. G. Haller, A. Hadjighasem, M. Farazamand & F. Huhn, Defining coherent vortices objectively from the vorticity. J. Fluid Mech. 795(2016) 136-173. [PDF]

  92. A. Hadjighasem & G. Haller, Geodesic transport barriers in Jupiter's atmosphere: a video-based analysisSIAM Review 58 (2016) 69-89. [PDF]

  93. G. Haller, Dynamically consistent rotation and stretch tensors from a dynamic polar decomposition.   J.  Mechanics and Physics of Solids80(2016) 70-93. [PDF]

  94. M. Farazmand & G. Haller, Polar rotation angle identifies elliptic islands in unsteady dynamical systems. Physica D 315 (2016) 1-12. [PDF]

  95. T. Peacock, G. Froyland & G. Haller, Introduction to focus issue: Objective detection of coherent structures. Chaos 25(2015) 087201.[PDF]

  96. F.J. Beron-Vera, M.J. Olascoaga, G. Haller, M. Farazmand, J. Trinanes & Y. Wan, Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean. 
    Chaos 25 (2015) 087412.  [PDF]

  97. D. Karrasch, M. Farazmand & G. Haller, Attraction-based computation of hyperbolic Lagrangian coherent structures. J. Comp. Dynamics 2 (2015) 83-93. [PDF]

  98. F. Huhn, W.M. van Rees, M. Gazzola, D. Rossinelli, G. Haller and P. Koumoutsakos, Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices. Chaos 25 (2015) 087405. [PDF]

  99. G. Provencher-Langlois, M. Farazmand & G. Haller, Asymptotic dynamics of inertial particles with memoryJ. Nonlinear Science 25 (2015) 1225-1255. [PDF]

  100. C. R. Short, D. Blazevski, K. C. Howell & G. Haller, Stretching in phase space and applications in general nonautonomous multi-body problemsCelest. Mech. Dyn. Astr. 122 (2015) 213–238. [PDF]

  101. K. Onu, F. Huhn, & G. Haller, LCS Tool: A Computational platform for Lagrangian coherent structures,  J. of Computational Science, 7 (2015) 26-36. [PDF

  102. G. Haller, Lagrangian Coherent StructuresAnnual Rev. Fluid. Mech, 47 (2015) 137-162. [PDF]

  103. M. Farazmand & G. Haller, The Maxey--Riley equation: Existence, uniqueness and regularity of solutionsNonlinear. Analysis22(2015) 98-106. [PDF]

  104. D. Karrasch, F. Huhn & G. Haller, Automated detection of coherent Lagrangian vortices in two-dimensional unsteady flowsProc. Royal Society. 471 (2014) 20140639.[PDF

  105. G. Haller & F. J. Beron-Vera, Addendum to ‘Coherent Lagrangian vortices: the black holes of turbulence’J. Fluid. Mech., 755 (2014) R3.[PDF]

  106. M. Farazmand, D. Blazevski & G. Haller, Shearless transport barriers in unsteady two-dimensional flows and mapsPhysica D 278–279 (2014) 44–57.[PDF]

  107. D. Blazevski & G. Haller, Hyperbolic and elliptic transport barriers in three-dimensional unsteady flowsPhysica D 273-274 (2014) 46-62.[PDF]

  108. F. B. Beron-Vera, M. J. Olascoaga, G. Haller, J. Trinanes, M. Iskandarani et al. Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophys. Res. Lett., 40 (2013) 6171–6175. [PDF]

  109. D. Karrasch & G, Haller, Do Finite-Size Lyapunov Exponents detect coherent structures?
    Chaos 23 (2013) 043126. [PDF]

  110. H. Teramoto, G. Haller & T. Komatsuzaki, Detecting invariant manifolds as stationary LCSs in autonomous dynamical systems, Chaos 23 (2013) 043107.[PDF]

  111. G. Haller & F.J. Beron-Vera, Coherent Lagrangian vortices: The black holes of turbulence. 
    J. Fluid Mech. 
    731 (2013) R4.[PDF] [Appendices]

  112. H. A. Kafiabad, P.W. Chan & G. Haller, Lagrangian detection of windshear for landing aircraft.
    J. Oceanic and Atmospheric Technology, 30 (2013) 2808-2819.[PDF]

  113. F. J. Beron-Vera, Y. Wang, M. J. Olascoaga, J. G. Goni & G. Haller, Objective detection of oceanic eddies and the Agulhas leakageJ. Phys. Oceanogr., 43 (2013) 1426–1438. [PDF].

  114. M. Farazmand & G. Haller, Attracting and repelling Lagrangian coherent structures from a single computationChaos 15 (2013) 023101. [PDF].

  115. A. Hadjighasem, M. Farazmand & G. Haller, Detecting invariant manifolds, attractors and generalized KAM tori in aperiodically forced mechanical systemsNonlinear Dynamics, 73 (2013) 689–704. [PDF].

  116. T. Peacock & G. Haller, Lagrangian coherent structures: The hidden skeleton of fluid flows.
    Physics Today 66 (2013) 41-47. [PDF].

  117. G. Haller & F. J. Beron-Vera, Geodesic theory of transport barriers in two-dimensional flows 
    Physica D  241 (2012) 1680-1702 [PDF]

  118. M. J. Olascoaga & G. Haller, Forecasting sudden changes in environmental contamination patterns
    Proc. National Acad. Sci. 109 (2012) 4738-4743. [PDF]

  119. M. Farazmand & G. Haller, Computing Lagrangian Coherent Structures from variational LCS theory, Chaos. 22 (2012) 013128 [PDF]

  120. M. Farazmand & G. Haller, Erratum and Addendum to `A variational theory of hyperbolic Lagrangian Coherent Structures’, Physica D, 241 (2012) 439-441.[PDF]

  121. W. Tang, G. Haller, & P. W. Chan, Lagrangian Coherent Structure Analysis of Terminal Winds Detected by LIDAR. Part II: Structure Evolution and Comparison with Flight Data.
    J. Applied Meteorology and Climatology, 50 (2011) 325-338 [PDF]

  122. T. P. Sapsis, N. T. Ouellette, J. P. Gollub & G. Haller, Neutrally buoyant particle dynamics in fluid flows: Comparison of experiments with Lagrangian stochastic modelsPhys. Fluids., 23 (2011) 293304, 1-15 [PDF]

  123. T. Sapsis, J. Peng, & G. Haller, Instabilities of prey dynamics in jellyfish feeding 
    Bull. Math. Biology, 73 (2011) 1841-1856 [PDF]

  124. W. Tang, P. W. Chan, & G. Haller, Lagrangian Coherent Structure Analysis of TerminalWindsDetected byLIDAR.Part I: Turbulence Structures, J. Applied Meteorology and Climatology, 50 (2011) 325-338 [PDF]

  125. G. Haller and T. Sapsis, Lagrangian Coherent Structures and the Smallest Finite-Time Lyapunov ExponentChaos 21 (2011) 023115, 1-5[PDF]

  126. G. Haller, A variational theory of hyperbolic Lagrangian Coherent Structures
    Physica D 240 (2011) 574-598.[PDF]

  127. G. Haller, T. Uzer, J. Palacian, P. Yanguas, & Charles Jaffe, Transition state geometry near higher-rank saddles in phase spaceNonlinearity 24 (2011) 527-561. [PDF]

  128. W. Tang, M. Mathur, G. Haller, D. C. Hahn, & F. H. Ruggiero, Lagrangian coherent structures near a subtropical jet stream, J. Atmospheric Sci., 67 (2010) 2307-2319 [PDF]

  129. G. Haller & T. Sapsis, Localized instability and attraction along invariant manifolds
    SIAM J. on Appl. Dynamical Systems, 9 (2010) 611-633 [PDF]

  130. W. Tang, P. W. Chan, & G. Haller, Accurate extraction of LCS over finite domains, with application to flight safety analysis over Hong Kong International AirportChaos 20 (2010) 017502[PDF]

  131. T. Sapsis & G. Haller, Clustering criterion for inertial particles in 2D time-periodic and 3D steady flowsChaos 20 (2010) 017515 [PDF]

  132. G. Haller, T. Uzer, J. Palacian, P. Janguas & C. Jaffe, Transition states near rank-two saddles: Correlated electron dynamics of heliumComm. Nonlinear Sci. Num. Simul, 15 (2010) 48-59 [PDF]

  133. T. Sapsis & G. Haller, Inertial particle dynamics in a hurricaneJ. Atmosph. Sci., 66 (2009) 2481-2492[PDF]

  134. W. Tang, G. Haller, J.-J. Baik, & Y. H. Ryu, Locating an atmospheric contamination source using slow manifolds Phys. Fluids, 21 (2009) 043302 (1-7)[PDF]

  135. Surana, G. Jacobs, O. Grunberg, & G. Haller, Exact theory of three-dimensional fixed separation in unsteady flowsPhys. Fluids. 20 (2008) 107101 (1-22) [PDF]

  136. M. Weldon, T. Peacock, G.B. Jacobs, M. Helu & G. Haller, Experimental and numerical investigation of the kinematic theory of unsteady separationJ. Fluid. Mech., 611 (2008) 1-11. [PDF]

  137. F. Lekien & G. Haller, Unsteady flow separation on slip boundaries, Phys. Fluids, 20 (2008) 097101 (1-19)[PDF]

  138. A. Surana & G. Haller, Ghost manifolds in slow-fast systems, with application to unsteady fluid flow separationPhysica D 237 (2008) 1507-1529. [PDF]

  139. G. Haller & T. Sapsis, Where do inertial particles go in fluid flows? Physica D 237 (2008) 573-583.[PDF]

  140. 36.T. Sapsis & G. Haller, Instabilities in the dynamics of neutrally buoyant particles. 
    Phys. Fluids, 20 (2008) 017102[PDF]

  141. C. Coulliette, F. Lekien, J. Paduano, G. Haller & J. Marsden, Optimal pollution mitigation in Monterey Bay based on coastal radar data and nonlinear dynamicsEnv. Science and Technology 41 (2007) 6562-6572. [PDF]

  142. M. Mathur, G. Haller, T. Peacock, J. E. Ruppert-Felsot, & H. L. Swinney, Uncovering the Lagrangian skeleton of turbulence. Phys. Rev. Lett. 98 (2007) 144502. [PDF]

  143. K. E. Rifai, G. Haller, & A. K. Bajaj, Global dynamics of an autoparametric spring-mass-pendulum systemNonlinear Dynamics 49 (2007) 105-116. [PDF]

  144. Surana, G. B. Jacobs, & G. Haller, Extraction of separation and reattachment surfaces from 3D steady shear flowsAIAA Journal. 45 (2007) 1290-1302. [PDF]

  145. M. A. Green, C. W. Rowley & G. Haller, Detection of Lagragian coherent structures in 3D turbulence. J. Fluid Mech. 572 (2007) 111–120.[PDF]

  146. H. Salman, J. S. Hesthaven, T. Warburton, T., & G. Haller, Predicting transport by Lagrangian coherent structures with a high-order methodTheor. & Comp. Fluid Dynam. 21 (2007) 39-58. [PDF]

  147. Aldridge, G. Haller, P. Sorger, & D. Lauffenburger, Direct Lyapunov exponent analysis enables parametric study of transient signaling governing cell behaviorIEE Proc. Systems Biology 153 (2006) 425-432. [PDF]

  148. 44.A. Surana, O. Grunberg, & G. Haller, Exact theory of three-dimensional flow separation. Part I. Steady separation J. Fluid. Mech., 564 (2006) 57-103. [PDF]

  149. M. S. Kilic, G. B. Jacobs, J. S. Hesthaven & G. Haller, Reduced Navier-Stokes equations near a flow boundaryPhysica D 217 (2006) 161-185. [PDF]

  150. M. R. Alam, W. Liu, & G. Haller, Closed-loop separation control: An analytic approach. Phys. Fluids. 1(2006) 043601 [PDF]

  151. F. Lekien, C. Coulliette, A. J. Mariano, E. H. Ryan, L. K. Shay, G. Haller, & J. Marsden, Pollution release tied to invariant manifolds: A case study for the coast of FloridaPhysica D 210 (2005) 1-20.[PDF]

  152. M. S. Kilic, G. Haller & A. Neishtadt, Unsteady flow separation by the method of averaging
    Phys. Fluids 17 (2005) 067104 [PDF]

  153. G. Haller, An objective definition of a vortex. J. Fluid Mech. 525 (2005) 1-26. [PDF]

  154. W. Liu & G. Haller, Inertial manifold and completeness of eigenmodes for unsteady magnetic dynamosPhysica D 194 (2004) 297-319. [PDF]

  155. G. Haller, Exact theory of unsteady separation for two-dimensional flowsJ. Fluid. Mech. 512 (2004) 257-311. [PDF]

  156. W. Liu & G. Haller, Strange eigenmodes and decay of variance in the mixing of diffusive tracers.
    Physica D
     188 (2004) 1-39. [PDF]

  157. G. Haller & R. Iacono, Stretching, alignment, and shear in slowly varying velocity fields.
    Phys. Rev. E 68 (2003) 056304. [PDF]

  158. Y. Wang, G. Haller, A. Banaszuk, & G. Tadmor, Closed-loop Lagrangian separation control in a bluff body shear flow modelPhys. Fluids A 15 (2003) 2251-2266. [PDF]

  159. G. A. Voth, G. Haller, & J.P. Gollub, Experimental measurements of stretching fields in fluid mixingPhys. Rev. Lett., 88 (2002) 254501. [PDF]

  160. G. Haller, Lagrangian coherent structures from approximate velocity data
    Phys. Fluids 14 (2002) 1851-1861. [PDF]

  161. G. Haller, Lagrangian coherent structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids 13 (2001) 3365-3385[PDF]

  162. G. Menon & G. Haller, Infinite-dimensional geometric singular perturbation theory for the Maxwell-Bloch equations. SIMA J. Math. Anal. 33 (2001) 315-346. [PDF]

  163. G. Haller, Response to `Comments on "Finding finite-time invariant manifolds..." ‘. Chaos 11 (2001) 431-437.[PDF]

  164. G. Haller, Distinguished material surfaces and coherent structures in 3D fluid flows.  Physica D 149 (2001) 248-277. [PDF]

  165. G. Haller & G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence
    Physica D 147 (2000) 352-370.[PDF]

  166. G. Haller, Finding finite-time invariant manifolds in two-dimensional velocity fieldsChaos 10 (2000) 99-108. [PDF]

  167. G. Haller, G. Menon, & V. Rothos, Shilnikov manifolds in coupled nonlinear Schrodinger equations. Phys. Lett A 263 (1999) 175-185[PDF]

  168. A. Poje, G. Haller, & I. Mezic, The geometry and statistics of mixing in aperiodic flowsPhys. Fluids A 11 (1999) 2963-2968. [PDF]

  169. A. Poje & G. Haller, Geometry of cross-stream mixing in a double-gyre ocean model.
    J. Phys. Oceanogr. 29 (1999) 1649-1665. [PDF]

  170. G. Haller, Homoclinic jumping in the perturbed nonlinear Schrodinger equationComm. Pure Appl. Math. 52 (1998) 1-47. [PDF]

  171. G. Haller & A. Poje, Finite time transport in aperiodic flowsPhysica D 119 (1998) 352-380. [PDF]

  172. G. Haller, Multi-dimensional homoclinic jumping and the discretized NLS equationComm. Math. Phys. 193 (1998) 1-46. [PDF]

  173. G. Haller & I. Mezic, Reduction of three-dimensional, volume preserving flows with symmetryNonlinearity 11 (1998) 319-339. [PDF]

  174. G. Haller & A. Poje, Eddy growth and mixing in mesoscale oceanographic flowsNonlin. Proc. Geophys. 4 (1997) 223-235. [PDF]

  175. G. Haller, Universal homoclinic bifurcations and chaos near double resonances. J. Stat. Phys. 86 (1997) 1011-1051.[PDF]

  176. G. Haller & G. Stepan, Micro-chaos in digital controlJ. Nonlinear Sci. 6 (1996) 415-448. [PDF]

  177. G. Haller & S. Wiggins, Geometry and chaos near resonant equilibria of 3DOF Hamiltonian systems. Physica D 90 (1996) 319-365. [PDF]

  178. G. Stepan & G. Haller, Quasiperiodic oscillations in robot dynamicsNonlin. Dyn8 (1995) 513-528. [PDF]

  179. G. Haller & S. Wiggins, Whiskered tori and chaos in Hamiltonian normal forms. Fields Inst. Comm. 4 (1995) 129-149.

  180. G. Haller & S. Wiggins, Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schrodinger equation. Physica D 85 (1995) 311-347.[PDF]

  181. G. Haller & S. Wiggins, N-pulse homoclinic orbits in perturbations of resonant Hamiltonian systemsArch. Rat. Mech. Anal. 130 (1995) 25-101. [PDF]

  182. G. Haller, Diffusion at intersecting resonances in Hamiltonian systems. Phys. Lett. A 200 (1995) 34-42. [PDF]

  183. G. Haller & S. Wiggins, Orbits homoclinic to resonances: the Hamiltonian case. Physica D 66 (1993) 298-346. [PDF]

  184. G. Haller, Gyroscopic stability, its universal loss and asymptotic behaviorNonlinear Vibr. Problems 25 (1993) 123-134.

  185. G. Haller, Gyroscopic stability and its loss in systems with two essential coordinatesInt. J. Non-Linear Mech. 27 (1992) 113-127.[PDF]

  186. G. Haller & G. Stepan, Codimension-two bifurcation in an approximate model for delayed robot controlInt. Ser. Num. Math. 97 (1991) 155-159.