M. Serra, P. Sathe, F. Beron-Vera & G. Haller, Uncovering the Edge of the Polar Vortex. submitted (2017) [View PDF]

M. Serra & G. Haller, Efficient Computation of Null-Geodesics with Applications to Coherent Vortex Detection. in press, Proceedings of the Royal Society A (2017) [View PDF]

M. Serra & G. Haller, Forecasting Long-Lived Lagrangian Vortices from their Objective Eulerian Footprints. J. Fluid. Mech. 813 (2017) 436-457 [View PDF]

Earlier years

G. Haller & S. Ponsioen, Exact Model Reduction by a Slow-Fast Decomposition of Nonlinear Mechanical Systems. submitted (2016) [View PDF]

R. Szalai, D. Ehrhardt & G. Haller, Nonlinear model identification and spectral submanifolds for multi-degree-of-freedom mechanical vibrations. submitted (2016) [View PDF]

E. L. Rempel, A. C.-L. Chian, F. J. Beron-Vera, S. Szanyi & G. Haller, Objective vortex detection in an astrophysical dynamo. in press, Monthly Notices of Roy. Astronom. Soc. (2016) [View PDF]

S. Szanyi, J. V. Lukovich, D. G. Barber & G. Haller, Persistent artifacts in the NSIDC ice motion dataset and their implications for analysis. Geophys. Res. Lett., 43 (2016) [View PDF] [Supporting Information] [Video]

D. Oettinger & G. Haller, An Autonomous Dynamical System Captures all LCSs in Three-Dimensional Unsteady Flows. Chaos 26, 103111 (2016). [View PDF]

A. Hadjighasem & G. Haller, Level set formulation of two-dimensional Lagrangian vortex detection methods. Chaos 26, 103102 (2016). [View PDF] [Video 1] [Video 2] [Video 3] [Video 4]

G. Haller & S. Ponsioen, Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction. Nonlinear Dyn. (2016) 1-42 [View PDF]

G. Haller, Climate, Black Holes and Vorticity: How on Earth are They Related? SIAM News, 49/5 (2016) pp. 1-2. [View Article]

A. Hadjighasem, D. Karrasch, H. Teramoto, & G. Haller, Spectral clustering approach to Lagrangian vortex detection. Phys. Rev. E 93, 063107 [View PDF] [Video 1] [Video 2] [Video 3]

M. Serra & G. Haller, Objective Eulerian coherent structures. Chaos 26 (2016) 053110 [View PDF]

D. Oettinger, D. Blazevski & G. Haller, Global variational approach to elliptic transport barriers in three dimensions. Chaos 26 (2016) 033114 [View PDF]

G. Haller, A. Hadjighasem, M. Farazamand & F. Huhn, Defining coherent vortices objectively from the vorticity. J. Fluid Mech. 795 (2016) 136-173. [View PDF]

A. Hadjighasem & G. Haller, Geodesic transport barriers in Jupiter's atmosphere: a video-based analysis,
SIAM Review 58 (2016) 69-89 [View PDF] [Editor's Review] [Video 1] [Video 2]

G. Haller, Dynamically consistent rotation and stretch tensors from a dynamic polar decomposition.   J. of the Mechanics and Physics of Solids, 80 (2016) 70-93. [View PDF]

M. Farazmand & G. Haller, Polar rotation angle identifies elliptic islands in unsteady dynamical systems.
Physica D 315 (2016) 1-12.
[View PDF]

T. Peacock, G. Froyland & G. Haller, Introduction to focus issue: Objective detection of coherent structures.
25 (2015) 087201 [View PDF]

F.J. Beron-Vera, M.J. Olascoaga, G. Haller, M. Farazmand, J. Trinanes & Y. Wan, Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean.
Chaos, 25 (2015) 087412 [View PDF]

D. Karrasch, M. Farazmand & G. Haller, Attraction-Based Computation of Hyperbolic Lagrangian Coherent Structures.
J. Computational Dynamics
2 (2015) 83-93 [View PDF]

F. Huhn, W.M. van Rees, M. Gazzola, D. Rossinelli, G. Haller and P. Koumoutsakos, Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices. Chaos, 25 (2015) 087405 [View PDF]

G. Provencher-Langlois, M. Farazmand & G. Haller, Asymptotic dynamics of inertial particles with memory.
J. Nonlinear Science,
May (2015) [View PDF]

C. R. Short, D. Blazevski, K. C. Howell & G. Haller, Stretching in phase space and applications in general nonautonomous multi-body problems, Celest. Mech. Dyn. Astr. 122 (2015) 213–238 [View PDF]

K. Onu, F. Huhn, & G. Haller, LCS Tool: A Computational platform for Lagrangian coherent structures, J. of Computational Science, 7 (2015) 26-36 [View PDF]

G. Haller, Lagrangian Coherent Structures.
Annual Rev. Fluid. Mech,
47 (2015) 137-162. [View PDF]

M. Farazmand & G. Haller, The Maxey--Riley equation: Existence, uniqueness and regularity of solutions,
Nonlinear. Analysis 22 (2015) 98-106 [View PDF]

D. Karrasch, F. Huhn & G. Haller, Automated detection of coherent Lagrangian vortices in two-dimensional unsteady flows.
Proc. Royal Society, 471 (2014) 20140639
[View PDF]

G. Haller & F. J. Beron-Vera, Addendum to ‘Coherent Lagrangian vortices: the black holes of turbulence’,
J. Fluid. Mech., vol. 755, 2014, R3 [View PDF]

M. Farazmand, D. Blazevski & G. Haller, Shearless transport barriers in unsteady two-dimensional flows and maps,
Physica D 278–279 (2014) 44–57 [View PDF]

D. Blazevski & G. Haller, Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows,
Physica D 273-274 (2014) 46-64 [View PDF]

F. B. Beron-Vera, M. J. Olascoaga, G. Haller, J. Trinanes, M. Iskandarani et al. Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. GEOPHYS. RES. LETT, 40 (2013) 6171–6175) [View PDF]

D. Karrasch & G, Haller, Do Finite-Size Lyapunov Exponents detect coherent structures?
Chaos 23, (2013) 043126 [View PDF]

H. Teramoto, G. Haller & T. Komatsuzaki, Detecting invariant manifolds as stationary LCSs in autonomous dynamical systems,
CHAOS 23 (2013) 043107 [View PDF]

G. Haller & F.J. Beron-Vera, Coherent Lagrangian vortices: The black holes of turbulence.
J. Fluid Mech. 731 (2013) R4
[View PDF] [View Appendices]

H. A. Kafiabad, P.W. Chan & G. Haller, Lagrangian detection of windshear for landing aircraft.
J. Oceanic and Atmospheric Technology, 30 (2013) 2808-2819 [View PDF]

F. J. Beron-Vera, Y. Wang, M. J. Olascoaga, J. G. Goni & G. Haller, Objective detection of oceanic eddies and the Agulhas leakage, Journal of Physical Oceanography.
J. Phys. Oceanogr., 43, 1426–1438. [View PDF].

M. Farazmand & G. Haller, Attracting and repelling Lagrangian coherent structures from a single computation.
Chaos 15 (2013) 023101 1-11. [View PDF].

A. Hadjighasem, M. Farazmand & G. Haller, Detecting invariant manifolds, attractors and generalized KAM tori in aperiodically forced mechanical systems,
Nonlinear Dynamics, 73 (2013) 689–704. [View PDF].

T. Peacock & G. Haller, Lagrangian coherent structures: The hidden skeleton of fluid flows.
Physics Today 66 (2013) 41-47. [View PDF].

G. Haller & F. J. Beron-Vera, Geodesic theory of transport barriers in two-dimensional flows
Physica D, 241 (2012) 1680-1702 [PDF]

M. J. Olascoaga & G. Haller, Forecasting sudden changes in environmental contamination patterns
Proc. National Acad. Sci. 109 (2012) 4738-4743. [PDF]

M. Farazmand & G. Haller, Computing Lagrangian Coherent Structures from variational LCS theory
Chaos. 22 (2012) 013128 [PDF]

M. Farazmand & G. Haller, Erratum and Addendum to `A variational theory of hyperbolic Lagrangian Coherent Structures
Physica D 240 (2011) 574-598.', Physica D, 241 (2012) 439-441. [PDF]

W. Tang, G. Haller, & P. W. Chan, Lagrangian Coherent Structure Analysis of Terminal Winds Detected by LIDAR. Part II: Structure Evolution and Comparison with Flight Data
J. Applied Meteorology and Climatology, 50 (2011) 325-338 [PDF]

T. P. Sapsis, N. T. Ouellette, J. P. Gollub & G. Haller, Neutrally buoyant particle dynamics in fluid flows: Comparison of experiments with Lagrangian stochastic models
Phys. Fluids., 23 (2011) 293304, 1-15 [PDF]

T. Sapsis, J. Peng, & G. Haller, Instabilities of prey dynamics in jellyfish feeding
Bull. Math. Biology, 73 (2011) 1841-1856 [PDF]

W. Tang, P. W. Chan, & G. Haller, Lagrangian Coherent Structure Analysis of Terminal Winds Detected by LIDAR. Part I: Turbulence Structures, J. Applied Meteorology and Climatology, 50 (2011) 325-338 [PDF]

G. Haller and T. Sapsis, Lagrangian Coherent Structures and the Smallest Finite-Time Lyapunov Exponent
Chaos 21 (2011) 023115, 1-5 [PDF]

G. Haller, A variational theory of hyperbolic Lagrangian Coherent Structures
Physica D 240 (2011) 574-598. [PDF]

G. Haller, T. Uzer, J. Palacian, P. Yanguas, & Charles Jaffe, Transition state geometry near higher-rank saddles in phase space
Nonlinearity 24 (2011) 527-561. [PDF]

W. Tang, M. Mathur, G. Haller, D. C. Hahn, & F. H. Ruggiero, Lagrangian coherent structures near a subtropical jet stream
J. Atmospheric Sci., 67 (2010) 2307-2319 [PDF]

G. Haller & T. Sapsis, Localized instability and attraction along invariant manifolds
SIAM J. on Appl. Dynamical Systems, 9 (2010) 611-633, [PDF]

W. Tang, P. W. Chan, & G. Haller, Accurate extraction of LCS over finite domains, with application to flight safety analysis over Hong Kong International Airport
CHAOS, 20 (2010) 017502 [PDF]

T. Sapsis & G. Haller, Clustering criterion for inertial particles in 2D time-periodic and 3D steady flows
CHAOS, 20 (2010) 017515 [PDF]

G. Haller, T. Uzer, J. Palacian, P. Janguas & C. Jaffe, Transition states near rank-two saddles: Correlated electron dynamics of helium
Comm. Nonlinear Sci. Num. Simul, 15 (2010) 48-59 [PDF]

T. Sapsis & G. Haller, Inertial particle dynamics in a hurricane
J. Atmosph. Sci., 66 (2009) 2481-2492.[PDF]

W. Tang, G. Haller, J.-J. Baik, & Y. H. Ryu, Locating an atmospheric contamination source using slow manifolds Phys. Fluids, 21 (2009) 043302 (1-7) [PDF]

A. Surana, G. Jacobs, O. Grunberg, & G. Haller, Exact theory of three-dimensional fixed unsteady separation
Phys. Fluids. 20 (2008) 107101 (1-22) [PDF]

M. Weldon, T. Peacock, G.B. Jacobs, M. Helu & G. Haller, Experimental and numerical investigation of the kinematic theory of unsteady separation
J. Fluid. Mech., 611 (2008) 1-11. [PDF]

F. Lekien & G. Haller, Unsteady flow separation on slip boundaries
Phys. Fluids, 20 (2008) 097101 (1-19) [PDF]

A. Surana & G. Haller, Ghost manifolds in slow-fast systems, with application to unsteady fluid flow separation
Physica D, 237 (2008) 1507-1529. [PDF]

G. Haller & T. Sapsis, Where do inertial particles go in fluid flows?
Physica D, 237 (2008) 573-583. [PDF]

36.T. Sapsis & G. Haller, Instabilities in the dynamics of neutrally buoyant particles.
Phys. Fluids, 20 (2008) 017102 [PDF]

C. Coulliette, F. Lekien, J. Paduano, G. Haller & J. Marsden, Optimal pollution mitigation in Monterey Bay based on coastal radar data and nonlinear dynamics
Enviromental Science and Technology 41 (2007) 6562-6572. [PDF]

M. Mathur, G. Haller, T. Peacock, J. E. Ruppert-Felsot, & H. L. Swinney, Uncovering the Lagrangian skeleton of turbulence
Phys. Rev. Lett. 98 (2007) 144502. [PDF]

K. E. Rifai, G. Haller, & A. K. Bajaj, Global dynamics of an autoparametric spring-mass-pendulum system
Nonlinear Dynamics 49 (2007) 105-116. [PDF]

A. Surana, G. B. Jacobs, & G. Haller, Extraction of separation and reattachment surfaces from 3D steady shear flows
AIAA J. 45 (2007) 1290-1302. [PDF]

M. A. Green, C. W. Rowley & G. Haller, Detection of Lagragian coherent structures in 3D turbulence
J. Fluid Mech. 572 (2007) 111–120. [PDF]

H. Salman, J. S. Hesthaven, T. Warburton, T., & G. Haller, Predicting transport by Lagrangian coherent structures with a high-order method
Theor. & Comp. Fluid Dynam. 21 (2007) 39-58. [PDF]

43.B. Aldridge, G. Haller, P. Sorger, & D. Lauffenburger, Direct Lyapunov exponent analysis enables parametric study of transient signaling governing cell behavior
IEE Proc. Systems Biology 153 (2006) 425-432. [PDF]

44.A. Surana, O. Grunberg, & G. Haller, Exact theory of three-dimensional flow separation. Part I. Steady separation J. Fluid. Mech., 564 (2006) 57-103. [PDF]

M. S. Kilic, G. B. Jacobs, J. S. Hesthaven & G. Haller, Reduced Navier-Stokes equations near a flow boundary Physica D, 217 (2006) 161-185. [PDF]

M. R. Alam, W. Liu, & G. Haller, Closed-loop separation control: An analytic approach
Phys. Fluids. 18, 043601 (2006) 043601 [PDF]

F. Lekien, C. Coulliette, A. J. Mariano, E. H. Ryan, L. K. Shay, G. Haller, & J. Marsden, Pollution release tied to invariant manifolds: A case study for the coast of Florida
Physica D 210 (2005) 1-20 [PDF]

M. S. Kilic, G. Haller & A. Neishtadt, Unsteady flow separation by the method of averaging
Phys. Fluids 17 (2005) 067104 [PDF]

G. Haller, An objective definition of a vortex
J. Fluid Mech. 525 (2005) 1-26. [PDF]

W. Liu & G. Haller, Inertial manifold and completeness of eigenmodes for unsteady magnetic dynamos
Physica D 194 (2004) 297-319. [PDF]

G. Haller, Exact theory of unsteady separation for two-dimensional flows
J. Fluid. Mech. 512 (2004) 257-311. [PDF]

W. Liu & G. Haller, Strange eigenmodes and decay of variance in the mixing of diffusive tracers
Physica D 188 (2004) 1-39. [PDF]

G. Haller & R. Iacono, Stretching, alignment, and shear in slowly varying velocity fields
Phys. Rev. E 68 (2003) 056304. [PDF]

Y. Wang, G. Haller, A. Banaszuk, & G. Tadmor, Closed-loop Lagrangian separation control in a bluff body shear flow model
Phys. Fluids A 15 (2003) 2251-2266. [PDF]

G. A. Voth, G. Haller, & J.P. Gollub, Experimental measurements of stretching fields in fluid mixing
Phys. Rev. Lett., 88 (2002) 254501. [PDF]

G. Haller, Lagrangian coherent structures from approximate velocity data
Phys. Fluids A14 (2002) 1851-1861 [PDF]

G. Haller, Lagrangian coherent structures and the rate of strain in a partition of two-dimensional turbulence
Phys. Fluids A 13 (2001) 3365-3385. [PDF]

G. Menon & G. Haller, Infinite-dimensional geometric singular perturbation theory for the Maxwell-Bloch equations
SIMA J. Math. Anal. 33 (2001) 315-346. [PDF]

G. Haller, Response to `Comments on "Finding finite-time invariant manifolds..." '
Chaos 11 (2001) 431-437. [PDF]

G. Haller, Distinguished material surfaces and coherent structures in 3D fluid flows
Physica D 149 (2001) 248-277. [PDF]

G. Haller & G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence
Physica D 147 (2000) 352-370. [PDF]

G. Haller, Finding finite-time invariant manifolds in two-dimensional velocity fields
Chaos 10 (2000) 99-108. [PDF]

G. Haller, G. Menon, & V. Rothos, Shilnikov manifolds in coupled nonlinear Schrodinger equations
Phys. Lett A 263 (1999) 175-185. [PDF]

A. Poje, G. Haller, & I. Mezic, The geometry and statistics of mixing in aperiodic flows
Phys. Fluids A 11 (1999) 2963-2968. [PDF]

A. Poje & G. Haller, Geometry of cross-stream mixing in a double-gyre ocean model
J. Phys. Oceanogr. 29 (1999) 1649-1665. [PDF]

G. Haller, Homoclinic jumping in the perturbed nonlinear Schrodinger equation
Comm. Pure Appl. Math. 52 (1998) 1-47. [PDF]

G. Haller & A. Poje, Finite time mixing in aperiodic flows
Physica D 119 (1998) 352-380. [PDF]

G. Haller, Multi-dimensional homoclinic jumping and the discretized NLS equation
Comm. Math. Phys. 193 (1998) 1-46. [PDF]

G. Haller & I. Mezic, Reduction of three-dimensional, volume preserving flows with symmetry
Nonlinearity 11 (1998) 319-339. [PDF]

G. Haller & A. Poje, Eddy growth and mixing in mesoscale oceanographic flows
Nonlin. Proc. Geophys. 4 (1997) 223-235. [PDF]

G. Haller, Universal homoclinic bifurcations and chaos near double resonances
J. Stat. Phys. 86 (1997) 1011-1051. [PDF]

G. Haller & G. Stepan, Micro-chaos in digital control
J. Nonlinear Sci. 6 (1996) 415-448. [PDF]

G. Haller & S. Wiggins, Geometry and chaos near resonant equilibria of 3DOF Hamiltonian systems
Physica D 90 (1996) 319-365. [PDF]

G. Stepan & G. Haller, Quasiperiodic oscillations in robot dynamics
Nonlin. Dyn. 8 (1995) 513-528. [PDF]

G. Haller & S. Wiggins, Whiskered tori and chaos in Hamiltonian normal forms
Fields Inst. Comm. 4 (1995) 129-149.

G. Haller & S. Wiggins, Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schrodinger equation
Physica D 85 (1995) 311-347. [PDF]

G. Haller & S. Wiggins, N-pulse homoclinic orbits in perturbations of resonant Hamiltonian systems
Arch. Rat. Mech. Anal. 130 (1995) 25-101. [PDF]

G. Haller, Diffusion at intersecting resonances in Hamiltonian systems
Phys. Lett. A 200 (1995) 34-42. [PDF]

G. Haller & S. Wiggins, Orbits homoclinic to resonances: the Hamiltonian case
Physica D 66 (1993) 298-346. [PDF]

G. Haller, Gyroscopic stability, its universal loss and asymptotic behavior
Nonlinear Vibr. Problems 25 (1993) 123-134.

G. Haller, Gyroscopic stability and its loss in systems with two essential coordinates
Int. J. Non-Linear Mech. 27 (1992) 113-127. [PDF]

G. Haller & G. Stepan, Codimension-two bifurcation in an approximate model for delayed robot control
Int. Ser. Num. Math. 97 (1991) 155-159.