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A B S T R A C T

Lagrangian coherent structures (LCSs) are widely recognized as playing a significant role in turbulence
dynamics since they can control the transport of mass, momentum or heat. However, the methods used to
identify these structures are often based on ambiguous definitions and arbitrary thresholding. While LCSs
theory provides precise and frame-indifferent mathematical definitions of coherent structures, some of the
commonly used extraction algorithms employed in the literature are still case-specific and involve user-defined
parameters. In this study, we present a new, unsupervised extraction algorithm that enables the extraction
of rotational LCSs based on Lagrangian average vorticity deviation from an arbitrary 3D velocity field. The
algorithm utilizes two alternative methods for the identification of the LCS core (ridge): an unsupervised
clustering method and a streamline-based method. In a subsequent step, the ridge curve is parametrized
through a pruning procedure of minimum spanning tree graphs. To assess the effectiveness of the algorithm,
we test it on two cases: (i) direct numerical simulations of forced homogeneous and isotropic turbulence and
(ii) three-dimensional Particle Tracking Velocimetry experiments of a turbulent gravity current.
1. Introduction

Over the last decades, coherent flow structures have received con-
siderable attention in the fluid dynamics community. The principal
reason behind this interest stems from the crucial role that these
structures play in the transport of mass and momentum in turbulent
flows [1]. A typical example is that of elongated streamwise vortical
structures that form in the wall-proximity of bounded or semi-bounded
turbulent flows, such as boundary layers [2–4], pipe flows [5,6] and
channel flows [7,8]. These vortical structures have a fundamental con-
tribution to the wall-normal exchange of momentum, setting thereby
the average streamwise velocity profile in the near-wall region and
thus the turbulent drag over the solid boundary. Consequently, accu-
rate detection of vortical structures is essential, for example, for the
implementation of flow control techniques of turbulent drag reduction
strategies [9–11]. Coherent flow structures also populate the boundary
of turbulent jets [12–15], mixing layers [16–19] and gravity currents,
where they impact the entrainment and mixing of external fluid into
the turbulent flow region [20–22]. Detecting vortical structures in
these flows can thus inform the spread of passive substances [23],
for example. In a more fundamental setting, coherent flow structures

∗ Corresponding author at: Institute of Environmental Engineering, ETH Zürich, CH-8039 Zürich, Switzerland.
E-mail address: nemarius@ethz.ch (M.M. Neamtu-Halic).

have been studied in homogeneous and isotropic turbulent flows as
well, with the goal to understand the energy transfer across length
scales [24].

A variety of extraction methods have been developed to identify
coherent structures, such as the Q- [25], 𝛥- [26] and 𝜆2-criterion [27].
However, most of these methods lack a fundamental requirement of me-
chanics for analyzing material behavior: objectivity, i.e., indifference to
moving and rotating observers [28]. The theory of Lagrangian coherent
structures (LCSs) theory overcomes this objectivity problem by defining
hyperbolic (attracting and repelling) and elliptic (vortical) coherent
structures in a material and hence frame-invariant fashion [29,30].
While these definitions and the mathematical results building on them
are unambiguous, the numerical implementation of LCS-based extrac-
tion algorithms in three dimensions (3D) remains elusive. Commonly,
the main approaches of 3D LCS-based algorithms assume an a pri-
ori knowledge of the structures’ location and orientation to extract
them [31,32].

Recently, a fully automatized and frame-indifferent algorithm based
on the Lagrangian averaged vorticity deviation (LAVD) method [31,33]
was introduced by Neamtu-Halic et al. [20]. The authors successfully
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data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/compfluid
https://www.elsevier.com/locate/compfluid
https://orcid.org/0000-0002-6438-7967
https://orcid.org/0000-0002-4616-5033
https://orcid.org/0000-0003-1260-877X
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
https://github.com/NeamtuMarius/Unsupervised-3D-LAVD-Extraction-Algorithm
mailto:nemarius@ethz.ch
https://doi.org/10.1016/j.compfluid.2025.106558
https://doi.org/10.1016/j.compfluid.2025.106558


M.M. Neamtu-Halic et al.

t

r

b
o
f
b

t

o
E

h
b
d
i
t
t
f
a
t
p
t
a
L

i

[

v
n
r
r
t

t
t
t
s

d
r
t

t
t
c

s
o
H

v
o
w
p
c
p

w

f

Computers and Fluids 290 (2025) 106558 
extracted rotational LCSs from 3D LAVD fields without prior knowledge
of the structures’ orientation. However, their method is based upon
several parameters that need to be provided by the user and require
uning depending on the investigated flow and data quality at hand.

A common impediment to rotational LCS algorithms is connected
to finding the centerlines of the vortical structures in 3D. These 3D
curves are defined as sets of local maxima in planes orthogonal to the
centerlines [20]. In other words, the centerlines are codimension-two
idges of a diagnostic 3D scalar field. No algorithm for extracting such

curves without user-predefined parameters is available in the literature.
Here, we implement a new algorithm to determine the position of
the 3D centerline of rotational LCSs based on a set of tolerances
with well-defined ranges, bounded by asymptotic values of explicit
connotation.

Specifically, we provide a fully automated algorithm for the educ-
tion of 3D rotational LCSs based on a unambiguous set of tolerance
values that eliminate the arbitrariness of the user-dependent parame-
ters typical of other available algorithms. The input to the algorithm
is a time-resolved 3D velocity field. Here we focus on rotational LCSs
ased on the LAVD principle as a proof of concept. The applicability
f the method is, however, more general and can be implemented
or other LCS definitions. For example, the recently introduced active
arriers [30,34], defined as surfaces minimizing the diffusive trans-

port of an active vector field provide a pseudo velocity field that is
amenable to the same rotational LCS extraction approach. We discuss
wo flow examples to show the tolerance values used to educe the

rotational LCSs with the intent to familiarize the user with the algo-
rithm. Together with the details of the algorithm introduced in the
next sections of the paper, we provide an open-source MATLAB code
f the algorithm (github.com/NeamtuMarius/Unsupervised-3D-LAVD-
xtraction-Algorithm).

This work is organized as follows. In Section 2, we describe the dif-
ferent steps of the algorithm. In Section 3, we show the applicability of
the algorithm to three different data sets, and we draw our conclusions
in Section 4.

2. Algorithm

In the following, we describe a procedure to educe elliptic LCSs,
ereinafter referred to as ‘‘rotational’’ LCSs, from 3D flow data. First, we
riefly introduce the computation of the LAVD field from 3D Eulerian
ata. Then, we describe and compare two alternative procedures to
dentify points that belong to ridges of the LAVD field. The first of
hese methods is based on a modified gradient ascend algorithm applied
o the gradient of the LAVD field, while the second method uses a
ast computation of streamlines of the same field. Subsequently, we
pply an unsupervised clustering algorithm on the ridge point cloud
o distinguish between different LAVD ridges. Eventually, through a
rocedure that we call pruning, we select and sort ridge points, in order
o parametrize each LAVD ridge as a 1D curve in 3D. We then apply
 spline interpolation to this curve to obtain the tangent vectors along
AVD ridges.

2.1. LAVD calculation

To compute the LCSs, as a first step, the LAVD field is computed
from 3D time-resolved Eulerian velocity data [31]. To this end, fluid
particle trajectories are computed by integrating the equation of motion
𝑑𝐱
𝑑 𝑡 = 𝐯(𝐱, 𝑡), (1)

with x denoting the fluid particles position and v the velocity field.
Once fluid trajectories are computed, the LAVD field introduced by [31]
s obtained as

LAVD𝑇 (

𝐱0
)

∶= 1 𝑡0+𝑇
|

|𝝎
(

𝐱(𝑠; 𝐱0), 𝑠
)

− 𝝎 (𝑠)||d𝑠 (2)
𝑡0 𝑇 ∫𝑡0 | |

d

2 
by integrating the norm of the vorticity deviation |

|

|

𝝎
(

𝐱(𝑡; 𝐱0), 𝑡
)

− 𝝎 (𝑡)||
|

over the extraction time 𝑇 using a fourth-order Runge–Kutta method
31]. The vorticity deviation is obtained as the difference between the

vorticity along trajectories 𝝎 and the instantaneous spatial average of
the vorticity 𝝎.

For a given initial time 𝑡0 and integration time 𝑇 , the Lagrangian
orticity field is computed and stored in three (one for each compo-
ent of the vorticity vector) 4D matrices. The first three dimensions
epresent the spatial distribution of the vorticity field, while the fourth
epresents time. For each time, the spatial average of the vorticity vec-
or (𝜔(𝑠) in Eq. (2)) is calculated by averaging each of the 4D matrices

over the first three dimensions. Then, one unique 4D matrix corre-
sponding to the norm of the vorticity deviation (||

|

𝝎
(

𝐱(𝑡; 𝐱0), 𝑡
)

− 𝝎 (𝑡)||
|

)
is computed. The integration procedure is performed by summing up
|

|

|

𝝎
(

𝐱(𝑡; 𝐱0), 𝑡
)

− 𝝎 (𝑡)||
|

d𝑠 and dividing by the integration time. By storing
he cumulative sum of the LAVD matrix and dividing by the current
ime, one can obtain all the LAVD fields with extraction time smaller
han or equal to 𝑇 . This latter procedure is useful for studying the
ensitivity of the results to the extraction time.

As an example, Fig. 1(a) shows the LAVD field computed from 1283

fluid trajectories released at a given instant from a cubic grid mesh
of a sub-volume in a turbulent flow. The data is from the forced,
homogeneous and isotropic turbulent flow case taken from the John
Hopkins Turbulence (JHT) database [35]. The grid size corresponds
to 2𝜂, where 𝜂 = (𝜈3∕𝜖)1∕4 is the Kolmogorov length scale with 𝜈
enoting the fluid kinematic viscosity and 𝜖 the average dissipation
ate of the turbulent kinetic energy. The integration time 𝑇 is equal
o 0.85𝜏𝜂 , where 𝜏𝜂 = (𝜈∕𝜖)1∕2 is the Kolmogorov time scale. To have an

impression of the intricate structure of the 3D LAVD field, in Fig. 1(b)
we show isosurfaces corresponding to the 99th percentile of the LAVD
magnitude inside the cube. Fig. 1(c) illustrates how the integration
ime affects the resulting LAVD field. With an increasing integration
ime window, specific regions with strong LAVD magnitude retain their
oherence (right panel), while other areas experience a greater level of

diffusion.

2.2. Ridge detection

The core of the procedure we propose here to identify vortical
tructures in 3D is the identification of the center of the vortices. The set
f points constituting these centers is a curve in the 3D space, which
aller et al. [31] identified with the innermost (maximum) member

of an LAVD level surface family. Although the center of the structure
has a precise definition [31], its identification is a complex problem in
turbulent data sets. Indeed, unlike in some idealized flows, the LAVD is
generally not constant along the center line of vortical LCSs in turbulent
flows [20].

As a consequence, the requirement that a vortex core is an LAVD
level set must be relaxed and a different property of vortex center has to
be employed. Similarly to Neamtu et al. [20], we define the core of the
ortex as a codimension-two ridge of the LAVD field. By the definition
f a height ridge, points along a ridge of a scalar field are local maxima
ithin planes normal to the ridge at those points. In other words, the
oints along ridges have a relatively low rate of change along the ridge
urve compared to the rapid decrease in the radial direction along
lanes locally normal to ridge curve. Due to its implicit nature, this

property is challenging to utilize as it depends on local properties of a
priori unknown curves. To overcome this challenge, in the following,

e introduce two different algorithms.

2.2.1. Gradient climbing
The first algorithm for ridge detection is based on the gradient

climbing of the ∇LAVD𝑇
𝑡0

field. Such a basis was used in the past
or other algorithms [20,21], but the implementation relied on user-
ependent parameters. To avoid this arbitrariness, an independent
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Fig. 1. LAVD fields extracted from sub-volumes of the JHT dataset. Panel (a) LAVD on the surface of a cube of 128 grid points corresponding to 256 Kolmogorov lengths; the
extraction time is 0.02 integral time scales 𝑇𝐼 corresponding to 0.85 Kolmogorov times and 20 time-steps. Panel (b) shows the isosurfaces of LAVD corresponding to the 99𝑡ℎ
percentile of the LAVD magnitude inside the cube. Panel (c): LAVD extracted on a volume slice of 128 grid points for different value of the extraction time.
stopping condition for ridge detection is introduced in this work. Once
the potential ridge point candidates are identified, an unsupervised
clustering algorithm is employed to classify the points in different
ridges.

Let us denote a ridge point location with 𝐱𝑟. To start the climbing
algorithm along the ∇LAVD𝑇

𝑡0
field, trajectories are initialized at 𝐱𝑟0. For

the initial position 𝐱𝑟0, all points on the Eulerian grid of ∇LAVD𝑇
𝑡0

can
be selected. However, to save the computational cost, a threshold on
the norm of ∇LAVD𝑇

𝑡0
was imposed to select grid points characterized

by a high steepness of the LAVD field. This procedure reduces the
computational costs, without considerably impacting the final results.

The ridge point locations are thus determined by the following
gradient climbing routine:

𝐱𝑟𝑛+1 = 𝐱𝑟𝑛 + 𝛾∇LAVD𝑇
𝑡0

(

𝐱𝑟𝑛
)

, 𝑛 ≥ 1, (3)

where 𝛾 > 0 is the step size. A suitable choice for the step size is
𝛾 = 1∕𝐿, where 𝐿 is the Lipschitz constant of the gradient, defined
as
|

|

|

∇LAVD𝑇
𝑡0
(𝐱) − ∇LAVD𝑇

𝑡0

(

𝐱′
)

|

|

|

≤ 𝐿 |

|

𝐱 − 𝐱′|
|

, 𝐱, 𝐱′ ∈ 𝑈 (4)

to prevent oscillations of 𝐱𝑟 over the whole domain 𝑈 . The constant
𝐿 can be selected as the largest eigenvalue of the Hessian matrix
∇2LAVD𝑇

𝑡0
(𝐱) of the LAVD field. We adopt as sufficient condition,

𝐿 = 𝐶1 max
𝐱∈𝑈

(

max
𝑖=1,2,3

eig𝑖
(

∇2LAVD𝑇
𝑡0
(𝐱)

)

)

(5)

where eig𝑖 denotes the 𝑖th eigenvalue and 𝐶1 ≥ 1.
The gradient climbing algorithm needs an appropriate stopping con-

dition and in the case of 1D ridges, we adopt the following procedure:
for each iteration step 𝑛, we evaluate the binary field 𝐵𝑛

𝑖,𝑗 ,𝑘 of the
ridge’s edge position by binning the 3D space with boxes of edge length
𝑙 = 𝑚𝑖𝑛 (d𝑥,d𝑦,d𝑧), where (d𝑥,d𝑦,d𝑧) is the velocity field resolution,
i.e., the distance between adjacent grid points in 𝑥, 𝑦 and 𝑧 direction,
respectively. 𝐵𝑛 = 1 if there are any ridge points in the box, else it
𝑖,𝑗 ,𝑘

3 
is zero. We evaluate the mean-square error between two subsequent
iterations by defining

MSE𝑛 =
∑

𝑖,𝑗 ,𝑘

(

𝐵𝑛
𝑖,𝑗 ,𝑘 − 𝐵𝑛+1

𝑖,𝑗 ,𝑘
)2

. (6)

The algorithm stops when MSE𝑛 ≤ 𝐶2MSE𝑛=1 with 𝐶2 ≃ 0.
Fig. 2 shows the results of the gradient climbing algorithm for the

cube of the HIT flow field shown in Fig. 1. To compute the gradient
of the LAVD field, a central difference scheme is adopted, though
the implementation of higher-order schemes is also possible if greater
accuracy is required. The upper panels show the ridge point positions
for four intermediate iteration steps, including the final iteration (𝑛 =
2500). As seen from the first panel of Fig. 2, although initially grouped
due to the selection criterion discussed above, the points are rather
sparse in space. For this specific case, the computational procedure
was initialized at grid points with ∇LAVD𝑇

𝑡0
> 𝑝𝑒𝑟𝑐80%(∇LAVD𝑇

𝑡0
), where

𝑝𝑒𝑟𝑐80%(∇LAVD𝑇
𝑡0
) is the 80th percentile of ∇LAVD𝑇

𝑡0
. As the algorithm

progresses the points begin to accumulate on the LAVD ridges (compare
the first three figures in panel a of Fig. 2), while no significant change
can be seen between the last two iterations shown in panel (a).

To quantify the change between subsequent iterations, the MSE𝑛

is shown in Fig. 2(b) against the iteration number 𝑛. Note that the
MSE𝑛 has a fast initial decrease with respect to 𝑛, while gradually
decreasing more slowly. The algorithm stops when a 10% tolerance
with respect to the initial value of MSE𝑛 at 𝑛 = 1 is reached (dashed line
in Fig. 2b). To test if an appropriate choice of the tolerance was made,
the change of MSE𝑛 between subsequent iterations, 𝛥MSE𝑛 is shown
in Fig. 2(c). As seen in the figure, after approximately 1800 iterations,
𝛥MSE𝑛 fluctuates around 0, thus changes in MSE𝑛 are relatively small.

2.2.2. Streamline method
We now discuss a second method to compute the centerline of

the vortical structures, hereinafter called the streamline method. This
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Fig. 2. Illustration of the gradient climbing routine for the ridge detection. The gradient is climbed starting from suitable starting points (panel (a), 𝑛 = 1), by iterating Eq. (3)
until the desired stopping condition is met. Panel (a) shows a snapshot of the point positions across iterations; panel (b) shows the MSE𝑛, while panel (c) shows the increment of
MSE𝑛 between two subsequent iterations, namely the first order derivative of the loss function.
Fig. 3. Illustration of the streamline method for ridge detection. Panel (a): ridges for different values 𝑡ℎ𝑟 of the points-per-bin cumulative density function of panel (b). Panel (c):
zoom-in on an accumulation region of the streamlines.
method is based on the streamlines of the ∇LAVD𝑇
𝑡0

vector field. While
similar to the algorithm discussed in Section 2.2.1, the streamline
4 
algorithm requires no iterations. It is based on a two-step procedure.
As a first step, the streamlines are computed from the ∇LAVDT field.
t0
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Fig. 4. Pruning the minimum spanning tree; after building the minimum spanning tree graph (a), the vertices that have only one connection are removed (b); the process is
iterated until only two vertices have only one connection, namely the first and last vertices (c).
To initialize the streamlines computing procedure, the same grid points
of the LAVDT

t0
vector field are employed. The integration step can

be set similarly to what is described in Section 2.2.1, and the total
integration time is prolonged until all the streamlines reach the domain
boundaries. Subsequently, the 3D space is subdivided into bins and box-
counting is applied to determine the number of streamline points per
bin. The rationale behind the method stems from the accumulation of
streamlines along ridges, which implies a higher number of streamline
points observed along the ridge lines than elsewhere. This can be
observed in Fig. 3(c).

To identify LAVD ridges, the desired 3D observation volume is
subdivided into bins with a size that is comparable but not nec-
essarily equal to the resolution of the data. Then the box-counting
algorithm is applied and a cumulative density function (𝑐 𝑑 𝑓 ) of the
number of points per bin is computed. An example of a 𝑐 𝑑 𝑓 for the
128 × 128 × 128 snapshot of the HIT flow is shown in Fig. 3(b). A
threshold (𝑡ℎ𝑟) on the 𝑐 𝑑 𝑓 allows to isolate the bins with a number
of points equal to or higher than the threshold value. Examples of
increasing 𝑡ℎ𝑟 are shown in Fig. 3(a). Note that, increasing the threshold
value from 99.00 to 99.999 progressively isolates the ridge curves.

2.3. Parametrization of the ridge point cloud

Once the ridge point locations are determined, we classify them
to distinguish between different ridges in order to locate different
structures. For this purpose, we employ an unsupervised clustering
algorithm that subdivides the points into classes based on their relative
distances. The algorithm starts by creating as many classes as the
number of points and then it collapses close points. The algorithm stops
when each class is farther from each other than a certain distance 𝑑.
Here, 𝑑 must be comparable to the flow field resolution.

As a result of the clustering, the ridge points are now classified but
ridge lines are not yet parametrized. Moreover, the points of the clus-
ters are normally not aligned with the targeted ridge curves. Thus, to
obtain 3D parametrized curves, the following procedure is applied. For
each cluster, the minimum spanning tree graph is computed (Fig. 4(a)).
If the graph presents more than two points with a single connection (red
points in Fig. 4(a)), a 𝑝𝑟𝑢𝑛𝑖𝑛𝑔 procedure is applied. As schematically
shown in Fig. 4(a), this pruning consists of an iterative process in which
all points with a single connection are eliminated until only two single-
connection points remain, namely the two extreme points of the center
line.
5 
A typical outcome of this procedure is shown in Fig. 4(b) in which
the grey points represent the initial cluster, while the orange points
are the output of the pruning. While the remaining points align along a
line, some points at the extremities are lost, i.e. the centerline is slightly
shorter compared to the primary line of the minimum spanning tree. An
example of the results from the above algorithm is given in Fig. 4(c) in
which a sub-volume of the cube shown in Fig. 3 is displayed.

2.4. LCSs boundary identification

As a result of the above steps, isolated parametrized 3D curves
representing the center of rotational LCSs are computed. In order to
identify the structure boundaries, a modified version of the algorithm
developed by Neamtu-Halic et al. [20] is employed. The LCS bound-
aries are defined as the locally outermost convex iso-surface of LAVD
bounding each ridge line. Convexity is defined locally by intersecting
the iso-surface with planes orthogonal to the ridge points. To define
orthogonal planes, an accurate computation of the tangent vector of
the ridge is needed. For this purpose, the parametrization of the ridge
point coordinates is fitted by a moving spline, from which the tangent
unit vector is computed analytically. The smoothing approach is con-
ceptually similar to the one adopted by Lüthi et al. [36] for Lagrangian
particle trajectories.

For each ridge, for each ridge point, and for a given value of the
LAVD threshold, the LAVD volume is sliced on planes orthogonal to
the ridge line and iso-lines are computed on each plane. The iso-lines
are then stored as individual objects. For each iso-line, the following
properties are computed:

• closeness: a flag determining if the iso-line is closed, namely if
its last point coincides with the first one;

• insideness: a flag determining if the iso-line contains the ridge
point;

• convexity: a fraction defining the degree of convexity of the
iso-line, computed as the ratio between the area of the convex
hull and the area of the polygon contained by the iso-line. If the
isoline is convex, the convexity is equal to one, while is contained
between 0 and 1 for a non-convex iso-line.

To determine the boundary of the LCS for each point along the ridge,
the following procedure is applied: First, iso-lines are extracted from
the LAVD field on a plane perpendicular to the ridge curve at the point
of interest. Next, only iso-lines that are closed, enclose the ridge point,
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Fig. 5. Sketches of three ridges (red lines) and the surrounding LAVD fields over planes orthogonal to the ridges.
Fig. 6. Example of objectively defined vortical coherent structures extracted from an
LAVD cube of 128 grid points corresponding to 256 Kolmogorov length scale 𝜂 of
homogeneous isotropic turbulence of JHT dataset. The structures in this figure are
obtained with the streamlines approach.

and are convex are retained. These conditions are checked according
to the criteria listed above. Among these lines, the outermost iso-line
is selected as the local boundary of the LCS.

The result of the volume slicing is illustrated in Fig. 5. Note that
the ridge points correspond to local 3D saddle points, where the LAVD
is almost constant along the ridge and fast-decreasing in the radial
direction. The final result of the extraction algorithm is the ridge center
lines surrounded by the outermost convex rings.

3. Example flow cases

In the following, the extraction algorithm is applied to two different
flow cases: the homogeneous and isotropic turbulence (HIT) data set
from the John Hopkins Turbulence (JHT) database [35] and particle
tracking data of a gravity current experiment [20].

In Fig. 6, the vortical structures extracted from the HIT data set
are shown. The direct numerical simulation is performed on a domain
of 2𝜋 × 2𝜋 × 2𝜋 with periodic boundary conditions, using 10243 grid
points, at a Taylor microscale Reynolds number of 𝑅𝑒𝜆 = 433. In the
example shown in Fig. 6, a subset of 2563 grid points were used and
the LAVD field was integrated over a time span of 200 time steps that
6 
Table 1
Overview of the tolerance parameters used for the two data sets, with 𝐶 𝐺 − − −
𝐺 𝑟𝑎𝑑 𝑖𝑒𝑛𝑡 𝐶 𝑙 𝑖𝑚𝑏𝑖𝑛𝑔, 𝑆 𝑀 − − − 𝑆 𝑡𝑟𝑒𝑎𝑚𝑙 𝑖𝑛𝑒 𝑀 𝑒𝑡ℎ𝑜𝑑 and 𝐿𝐶 − − − 𝐿𝑖𝑛𝑒 𝐶 𝑙 𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔.

Data set 𝐶2 𝑏𝑖𝑛∕𝑑 𝑥 𝑃𝑐 𝑑 𝑓 𝑑 𝑑∕𝑑 𝑥
(𝐺 𝐶) (𝑆 𝑀) (𝑆 𝑀) (𝐿𝐶)

HIT JHT 0.075 1/5 1 − 10−3 4
3D − PT V 0.10 1/5 1 − 5 ⋅ 10−3 5

correspond approximately to one Kolmogorov time scale. The computa-
tion time for the extraction of the ridges was approximately 60 seconds
using the streamline method and approximately 110 seconds using the
gradient climbing approach. Both computations were conducted on a
single-core, 3.5 GHz processor.

The experimental example involves the particle tracking data of
the gravity current ‘‘Ri20’’ from [20]. The laboratory flow is created
by injecting a lighter fluid in turbulent conditions at the top of an
inclined channel, which is filled with a denser fluid flowing in lam-
inar conditions. This setup generates a turbulent gravity current that
propagates along the lid of the inclined tank. The gravity current is
separated from the laminar region by a sharp layer, so called turbulent
non-turbulent interface. The flow is primarily driven by the buoyancy
difference between the fluids, while the turbulence is sustained by
shear forces between them. The relevant parameters of the flow are the
Richardson number 𝑅𝑖 = 0.20 and the bulk Reynolds number 𝑅𝑒 = 5000.
In this case, the data set consists of 480 × 120 × 80 grid points and the
LAVD field was computed over an extraction time of one eddy turnover
time. In Fig. 7, the corresponding vortical structures together with the
turbulent/non-turbulent interface (red surface) are shown. In this case,
a total of 23 structures were educed. The algorithm took 300 seconds to
extract all ridges using the gradient climbing approach and 140 seconds
using the streamline method. Both computations were again conducted
on a single-core, 3.5 GHz processor.

The tolerance parameters used in these examples are listed in
Table 1. These values show that the tolerances are smaller for the
numerical data (higher resolution) and larger for the experimental data
(lower resolution).

4. Summary and conclusions

In this paper, we introduced the first unsupervised algorithm for
the extraction of rotational Lagrangian coherent structures in 3D and
successfully applied it to velocity data from two different turbulent
flows. The core of the algorithm is the computation of 3D center lines
of coherent structures that correspond to one-dimensional ridges of the
3D LAVD field. As a first step, the points on the LAVD ridges were
identified. To this end, two different algorithms were devised, namely
a gradient climbing and a streamline-based algorithm. Subsequently, a
clustering procedure was employed to group the different ridges and
by pruning a minimum spanning tree built over each cluster allowed
a full parametrization of the ridge lines. The algorithm concludes with
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Fig. 7. Example of rotational coherent structures extracted from the 3D-PTV dataset of a gravity current. The structures shown in this figure are obtained with the gradient
climbing approach.
the evaluation of the boundary of the coherent structures through the
computation of local outermost close and convex contour levels in
planes perpendicular to the centerline of the structures.

The novelty of the 3D algorithm introduced in this paper is twofold.
On the one hand, the algorithm is independent of the orientation of
the structures. Indeed, nearly all previous algorithms were specifically
tailored to structures with known orientation and were difficult to
generalize [37]. On the other hand, the algorithm employs tolerances
that have a well-defined range, thus eliminating the arbitrariness of
other user-dependent algorithms [20–22]. Indeed, the tolerances em-
ployed here have clear boundaries and well-defined ‘‘ideal’’ values.
For example, the stopping condition for the gradient climbing would
require 𝐶2 = 0, a condition that is relaxed to 𝐶2 ≈ 0 due to finite
resolution and domain size.

The algorithm presented here was applied to two different data sets:
a direct numerical simulation of homogeneous and isotropic turbulence
and an experimental data set of a gravity current. These test cases
highlighted the potential of the algorithm to handle different types of
data sets of turbulent flows while showing that typical values for the
parameters to be set by the users are rather similar despite the data sets
presenting very different characteristics in terms of resolution, presence
of experimental noise, etc.

We finally note that the algorithm specifically used the LAVD field
as an input to compute the 3D ridges. However, the applicability is
more general since it can in principle be applied to any vortex extrac-
tion method that employs a scalar field as an input. Examples include
the trajectory rotation average (TRA) and the trajectory stretching
exponent (TSE) introduced in Haller et al. [38], as well as the active
transport barriers methods Haller et al. [34].
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