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Abstract For mechanical systems subject to peri-
odic excitation, forced response curves (FRCs) depict
the relationship between the amplitude of the peri-
odic response and the forcing frequency. For nonlin-
ear systems, this functional relationship is different
for different forcing amplitudes. Forced response sur-
faces (FRSs), which relate the response amplitude to
both forcing frequency and forcing amplitude, are then
required in such settings. Yet, FRSs have been rarely
computed in the literature due to the higher numer-
ical effort they require. Here, we use spectral sub-
manifolds (SSMs) to construct reduced-order models
(ROMs) for high-dimensional mechanical systems and
then use multidimensional manifold continuation of
fixed points of the SSM-based ROMs to efficiently
extract the FRSs. Ridges and trenches in an FRS char-
acterize the main features of the forced response. We
show how to extract these ridges and trenches directly
without computing the FRS via reduced optimization
problems on the ROMs. We demonstrate the effective-
ness and efficiency of the proposed approach by cal-
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1 Introduction

Forced response curves (FRCs) are important con-
structs for understanding forced nonlinear response in
mechanical systems. For a mechanical system subject
to periodic excitation at a given forcing amplitude, an
FRC depicts the functional relationship between the
amplitude of the periodic response and the forcing fre-
quency. FRCs offer various practical insights for non-
linear systems, especially for those with internal reso-
nances [1–3].

For nonlinear systems, FRCs constructed at differ-
ent forcing amplitudes can differ even qualitatively, let
alone quantitatively. Indeed, the FRCs of a damped
nonlinear system subject to periodic forcing at low
amplitudes resemble the linearized periodic response,
where we obtain a one-to-one relationship between the
response amplitude and the forcing frequency. How-
ever, for moderate or high forcing levels, the FRC can
deviate qualitatively from its linearized counterpart,
featuring even multiple periodic solutions for a given
forcing frequency [4]. To account for such nonlinear

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-024-09482-2&domain=pdf
http://orcid.org/0000-0002-3570-6535


7772 M. Li et al.

dependence of the FRCs on forcing amplitudes, forced
response surfaces (FRSs) are of great significance.

An FRS is a two-dimensional surface that depicts
the relationship of the response amplitude to both the
forcing frequency and the forcing amplitude. Hence, an
FRS provides a complete dynamic characterization of
nonlinear systems subject to periodic forcing. In this
work, we exploit spectral submanifolds (SSMs) and
parameter continuation for the efficient computation
of the FRSs in forced, damped, nonlinear mechanical
systems that may also be internally resonant.

1.1 Forced response surface

An FRS can be interpreted as a one-parameter family
of FRCs with varying forcing amplitudes. However,
constructing an FRS from a collection of FRCs is chal-
lenging for the following two reasons. First, the pre-
diction of any potential isolas in an FRC is difficult.
An isola is an isolated branch of periodic orbits that
is detached from the main branch [5,6]. An FRC is
typically obtained via one-dimensional parameter con-
tinuation that faces difficulties in locating isolas. This
is because continuation along an isola requires initial
solutions close to the detached branch whose location
is a priori unknown [5]. The second challenge arises
in sampling the forcing amplitudes so that all non-
trivial features in the FRS can be reconstructed. Such
an amplitude sampling is problem-dependent and may
require additional tuning.

The above two challenges can be overcome by
directly computing theFRSvia two-dimensional param-
eter continuation. As any isola merges with the main
branch for sufficiently large forcing amplitudes [5],
the birth and disappearance of isolas can be automati-
cally detected by computing the FRS as a single two-
dimensional object [6]. Furthermore, the sampling of
forcing amplitudes is also not required, as we detail
below.

An FRS is a two-dimensional surface that covers the
periodic response amplitudeunder combinedvariations
in the forcing frequency and amplitude. Standardmulti-
dimensional continuation algorithms, such as the Hen-
derson algorithm [7], are useful for FRS computation.
In the Henderson algorithm [7], any surface is approx-
imated by a piecewise polyhedral tessellation. In our
setting, this avoids any manual sampling of the forcing
amplitude. This algorithm has been implemented in the

software packages multifario [8] and coco [9], and
has recently been extended to adaptive boundary-value
problems [10]. Indeed, Henderson’s algorithm has also
been used to extract the FRSof coupled oscillators [11].

For an efficient extraction of the FRS, fast compu-
tation of periodic orbits is necessary. Periodic orbits of
low-dimensional nonlinear systems can be obtained via
various numerical methods such as numerical integra-
tion, shooting methods [12,13], collocation schemes
[14] and harmonic balance techniques [15]. However,
the computational costs of these methods are pro-
hibitive for high-dimensional systems such as finite
element (FE) models [16,17]. To reduce this computa-
tional cost, reduced-order models are paramount.

1.2 Nonlinear model reduction via SSMs

The recent theory of spectral submanifolds [18] (SSM)
has enabled rigorous model reduction of nonlinear
mechanical systems. SSMs are invariant manifolds that
serve as unique non-linear continuations of modal sub-
spaces for damped nonlinear systems. Furthermore,
SSMs are guaranteed to exist when appropriate non-
resonance conditions are satisfied on the eigenvalues
of the linearization [18]. With SSM reduction, peri-
odic orbits of high-dimensional systems appear as fixed
points of low-dimensional SSM-based reduced-order
models (ROMs) [16,17,19]. In particular, analytic
prediction of FRCs via two-dimensional SSM-based
ROMs is possible if the full system admits no inter-
nal resonances [16]. In this work, we further demon-
strate that the FRS associated with two-dimensional
SSMs can also be obtained analytically. For systems
with internal resonances, higher-dimensional SSMs are
relevant for model reduction [17,20] and the reduced
dynamics on such SSMs can again be used to com-
pute theFRSvia the aforementionedmulti-dimensional
continuation algorithms.

Aswewill discuss, the ridges and trenches of anFRS
characterize the main features of the forced response.
In fact, a ridge generalizes the notion of a damped
backbone curve, which is obtained by connecting the
points of maximal response amplitude in the FRCs at
various forcing amplitudes [19]. For weakly damped
systems, this damped backbone curve can be approx-
imated via the force appropriation method [21,22] or
the resonance decay method [19,23]. However, these
procedures lose their validity for systems with mod-
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erate damping or internal resonances. Computing the
FRS, on the other hand, is more generally valid for the
nonlinear characterization of mechanical systems.

As the ridges and trenches of an FRS delineate the
main features of interest in the forced response, it is
natural to ask if we can extract them directly with-
out computing the entire FRS. Indeed, this is possible
by formulating appropriate optimization problems for
periodic orbits and then solving them via successive
continuation techniques [24–26], as we will demon-
strate. Computing the ridges and trenches would pro-
vide a quick characterization of the FRS as continua-
tion along these curves will be faster than that along the
two-dimensional FRS.More importantly, wewill show
that SSM-based model reduction will further reduce
the optimization problem for periodic orbits to an opti-
mization problem for fixed points, which is essential
for fast extraction of ridges and trenches of the FRSs
of high-dimensional systems.

The remainder of this paper is organized as fol-
lows. In the next section, we discuss the computation
of the FRS and formulate the optimization problems
that define the ridges and trenches of the FRS. We
then review the SSM theory and show how SSM-based
ROMs can be used for FRS computation. Next, we use
SSM-based ROMs to simplify the optimization prob-
lems for computing ridges and trenches in the FRS.
We further present a solution method for these simpli-
fied optimization problems via parameter continuation.
Finally, we demonstrate the effectiveness of our proce-
dure on various numerical examples before drawing
conclusions.

2 Problem formulation

2.1 A motivating example

Consider a harmonically excited linear oscillator given
as

ẍ + 2ζ ẋ + x = ε cos�t, (1)

where ζ ∈ (0, 1/
√
2] is a fixed damping coefficient,

while the forcing amplitude ε and the forcing frequency
� are free to change. This linear system admits a peri-
odic solution in the form x(t) = C cos(�t − θ), where
C > 0 is the amplitude of the periodic response given
as

C(�, ε) = ε
√

(1 − �2)2 + 4ζ 2�2
, (2)

Fig. 1 Forced response surface of the harmonically forced lin-
ear oscillator (1) (upper panel) and its projection onto the plane
(�,C) (lower panel). Here the surface plot is based on the
explicit expression for C in (2) with ζ = 0.1, the blue line is
the ridge of the surface (based on (3)), and the gray lines on the
surface represent response curves with fixed� or ε. (Color figure
online)

and θ is the phase lag with respect to the forcing. The
expression (2) for C(�, ε) characterizes the forced
response surface (FRS) of the linear oscillator under
variations in (�, ε). A visualization of this surfacewith
ζ = 0.1 is shown in Fig. 1, where we see that there is
a ridge on the surface.

The ridge in Fig. 1 is a curve connecting the local
maxima of the forced response curves (FRCs) under
the variation in the forcing amplitude ε. In particu-
lar, taking a section in the graph of C along a given
amplitude ε = ε0, we obtain the FRC associated to
the forcing amplitude εo. In Fig 1, the gray curves rep-
resent the FRCs at various values of ε. These FRCs
intersect with the blue curve (ridge) at the maxima of
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the response amplitude with respect to the forcing fre-
quency �. Hence, these local maxima on the FRCs
satisfy the relationship

∂C(�, εo)

∂�
= 0 �⇒ �∗ =

√
1 − 2ζ 2. (3)

The ridge plotted as the blue line in Fig. 1 connects
these local maxima for various forcing amplitudes and
is given by the expression C(�∗, ε).

The projection of the ridge onto the plane (�,C)

provides the damped backbone curve. As seen in the
lower panel of Fig. 1, the damped backbone curve is
a straight line perpendicular to the � axis because the
system is linear.We also observe that the damped back-
bone curve is shifted from the conservative backbone
curve given by � = 1. This shift is controlled by the
damping coefficient ζ according to the relation (3).
When nonlinearity is added to the system, the back-
bone curves are expected to change shape. In fact,
these nonlinear behaviors can be very sensitive to the
damping coefficient, as observed in ref. [27], where the
hardening-type backbone curve associated with a con-
servative nonlinear system becomes a softening-type
curve when sufficiently large damping is added to the
system. Thus, it is important to compute the FRS and its
ridges in damped nonlinear systems for an appropriate
characterization of their forced response.

2.2 High-dimensional nonlinear systems

Now we consider a more general setup for a nonlinear
mechanical system as

Mẍ + Cẋ + Kx + f (x, ẋ)

= ε f ext(�t), 0 ≤ ε � 1 (4)

where x ∈ R
n is the generalized displacement vector;

M,C, K ∈ R
n×n are the mass, damping and stiff-

ness matrices; f (x, ẋ) is a Cr smooth nonlinear func-
tion that satisfies f (x, ẋ) ∼ O(|x|2, |x||ẋ|, |ẋ|2); and
ε f ext(�t) denotes external harmonic excitation.

Let z = (x, ẋ) be the state vector of the system,
the equations of motion (4) can be transformed into a
first-order system as below

Bż = Az + F(z) + εFext(�t), (5)

where the choice for the coefficient matrices B and
A, and the vector-valued functions F and Fext is not
unique; specific expressions can be found in [16,17].

Similarly to the motivating example, we are inter-
ested in the periodic response of system (5). In particu-
lar, we seek z(t) for t ∈ [0, T ] that satisfies the periodic
boundary conditions (PBCs)

z(0) − z(T ) = 0, (6)

where T = 2kπ/� is the time period of the periodic
response with k ∈ N and k > 1 defines a subharmonic
response.

In the motivating example, we have a single-degree-
of-freedom oscillator and it is natural to use its ampli-
tude to represent the response of the system. However,
for the high-dimensional system (5), we need an appro-
priate functional to quantify a response amplitude asso-
ciated with the entire system. Here, we consider two
such functionals that are based on two commonly used
norms. Let I ⊂ {1, · · · , 2n} be a set of indices such
that the amplitude of components zI needs to be opti-
mized. Then, a response amplitudeAL2 can be defined
as

AL2(z(t)) =
√

1

T

∫ T

0
z∗I(t)QzI(t)dt, (7)

where Q is an appropriately definedweight matrix. For
instance, AL2(z(t)) could represent a time-averaged
kinetic energy of the system with appropriate choices
for I and Q. In the special case that I has only one ele-
ment, namelyI = opt ∈ {1, · · · , 2n}, we also consider
the amplitude of the periodic signal for the component
‘opt’ of the state z as

AL∞(z(t)) = max
0≤t≤T

|zopt(t)|. (8)

An FRS is a two-dimensional surface in the space
(AL2 ,�, ε) or (AL∞ ,�, ε). Each point on the mani-
fold is a periodic orbit of (5). Since we generally do not
have analytical solutions such as (2), we need to use
numerical continuation to compute the FRS via atlas
algorithms. In particular, we discretize a periodic orbit
using a collocation mesh and this mesh is allowed to
adapt under the variations in ε and� [14].Multidimen-
sionalmanifold continuationmethods for such an adap-
tive boundary-value problem have become available
very recently [10]. In principle, one can directly apply
the algorithm in [10] for FRS computation. However,
this is computationally expensive for high-dimensional
problems.

A characterization of the FRS via its ridges and
trenches is computationally efficient relative to com-
putation of the entire FRS. We recall that the ridges
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and trenches on the FRS are curves of extrema of a
one-parameter family of FRCs under the variation in
ε. We now define optimization problems to locate the
ridges and trenches on an FRS directly.

Based on the two types of functional characterizing
the response amplitude, we consider the following two
dynamic optimization problems to locate ridges and
trenches on the FRS:

Problem 1 For any ε ∈ [εlb, εub], find � ∈ [�lb,�ub]
that renders AL2(z(t)) stationary under the constraints
that ODEs (5) and PBCs (6) are satisfied. Here ‘lb’
and ‘ub’ denote lower and upper bounds that specify
the domain of the response surface.

Problem 2 For any ε ∈ [εlb, εub], find t ∈ [0, T ] and
� ∈ [�lb,�ub] that render zopt(t) stationary under the
constraints that ODEs (5) and PBCs (6) are satisfied.

Here we seek stationary solutions such that both
ridges and trenches are obtained via a unified optimiza-
tion problem.

Remark 1 The functional AL∞ is based on the L∞
norm and is not smooth. This makes gradient-based
optimization difficult with the objective AL∞ . Hence,
in Problem 2, we consider zopt(t) as an optimization
objective and take t ∈ [0, T ] as a design variable that
must be determined.

We have now defined two dynamic optimization
problems in terms of periodic orbits of the high-
dimensional system (5). The computational cost of
obtaining these periodic orbits is significant. Optimiza-
tion of these periodic orbits further adds to the com-
putational expense. Next, we perform model reduc-
tion of the high-dimensional system (5) using spectral
submanifolds (SSMs), which has two significant com-
putational benefits in addition to the reduction in the
system dimension. First, using SSM-based ROMs, the
computation of periodic orbits is transformed into the
computation of fixed points, which significantly speeds
up the computation of the reduced periodic response.
Second, it allows us to convert Problems 1 and 2 into
algebraic optimization problems defined for the SSM-
based ROM. As we will see, these reduced algebraic
optimization problems can be solved very efficiently.

3 SSM-based model reduction

3.1 Setup

In this section, we set up the essential elements for
our SSM-based model reduction. Autonomous SSMs
are unique, smoothest invariant manifolds tangent to
non-resonant spectral subspaces of the linearized sys-
tem [18]. We briefly review the generic nonresonance
conditions that govern the existence of an SSM. These
conditions depend on the spectrum of the matrix pair
(A, B), associated with the linear system Bż = Az. In
the presence of near resonances within the linear spec-
trum, higher-dimensional SSMs are relevant for model
reduction [17], as discussed below. Since we are inter-
ested in extracting forced responses, we then construct
time-periodic SSMs that are perturbations of themaster
spectral subspace under the addition of the nonlinear
and periodic forcing term in system (5) [18]. Any near
resonance of the forcing frequency with the spectrum
(external resonance) will also be considered in this pro-
cess.

Let {λi }2ni=1 be a set of eigenvalues of the matrix
pair (A, B) in (5) such that Avi = λi Bvi for some
nontrivial vector vi . We assume that the trivial equi-
librium z = 0 is asymptotically stable. Then we can
arrange these eigenvalues according to Re(λ2n) ≤
Re(λ2n−1) ≤ · · · ≤ Re(λ1) < 0. We consider a 2m-
dimensional master underdamped modal subspace

E = span{vE1 , v̄E1 , · · · , vEm, v̄Em}, (9)

where the complex eigenvalues in the spectrum of E
are allowed satisfy a near inner (internal) resonance
relationship of the form

λEi ≈ l · λE + j · λ̄
E
, λ̄Ei ≈ j · λE + l · λ̄

E
(10)

for some i ∈ {1, · · · ,m}, where l, j ∈ N
m
0 (the sub-

script 0 here emphasizes that zero is included) satis-
fying |l + j | := ∑m

k=1(lk + jk) ≥ 2, and λE =
(λE1 , · · · , λEm).

As an example of the inner resonance relationship
(10), we consider an internally resonant system such
that the master subspace E has two pairs of modes that
exhibit near 1:1 inner resonances, i.e., λE2 ≈ λE1 and
λ̄E2 ≈ λ̄E1 . Then we have

λE1 ≈ l11λ
E
1 + l12λ

E
2 + j11λ̄

E
1 + j12λ̄

E
2 ,

λE2 ≈ l21λ
E
1 + l22λ

E
2 + j21λ̄

E
1 + j22λ̄

E
2 (11)
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for all lik, jik ∈ N0 that satisfy li1+ li2 = ji1+ ji2+1.
For systems without internal resonance, we consider
single-mode SSMs with m = 1.

We further allow for the forcing frequency � to be
(nearly) resonant with the master eigenvalues as [17]

λE − ir� ≈ 0, r ∈ Q
m . (12)

To illustrate the external resonance (12), we again con-
sider the example where the master subspace E has two
pairs of modes that exhibit near 1:1 inner resonances.
Provided that we are interested in the primary reso-
nance of the first pair of modes, namely,� ≈ iλE1 , then
we have r = (1, 1).

3.2 Time-periodic spectral submanifolds

Under the addition of the nonlinear internal force F(z)
and the external forcing εFext(�t), the master sub-
space E is perturbed into a periodic invariant mani-
fold with period 2π/� that isO(ε) Cr -close to E near
z = 0. There are actually many such manifolds in gen-
eral, but there is a unique, smoothest one called spectral
submanifold under appropriate non-resonance condi-
tions [18]. We denote this periodic SSM of system (5)
byW(E,�t) and review the conditions for its existence
and uniqueness in Theorem 1 of Appendix A.

3.3 Periodic orbits as fixed points of the reduced
dynamics

As detailed in Appendix A, we have an SSM parame-
terization z = W ε( p, φ) that maps the reduced coor-
dinates ( p, φ) ∈ C

2m × S1 to the state vector of
the full system. Furthermore, the reduced dynamics
ṗ = Rε( p, φ) and φ̇ = � (see (59)) on the SSM
represent a ROM for the full system (5). We can sim-
plify the reduced dynamics (59) via a normal-form style
of parameterization [16,17,28]. Here, we present the
general expression for this simplified vector field. A
detailed derivation can be found in [17].

Let qi and q̄i denote the parameterization coordi-
nates corresponding to the modes vEi and v̄Ei , respec-
tively, then the reduced coordinates p are given as

p = (q1, q̄1, · · · , qm, q̄m). (13)

We rewrite the parameterization (13) in the time-
periodic polar form as

qi = ρi e
i(θi+ri�t),

q̄i = ρi e
−i(θi+ri�t), i = 1, · · · ,m. (14)

The reduced dynamics (59) on the 2m-dimensional
SSM can then be transformed into the polar coordi-
nates (ρi , θi ) as [17](

ρ̇i
θ̇i

)
= rpi (ρ, θ ,�, ε) + O(ε|ρ|)gpi (φ), i = 1, · · · ,m,

φ̇ = �, (ρ, θ) ∈ R
m × T

m . (15)

Here the superscript p stands for ‘polar’; the explicit
expression for rpi can be found in [17]; gpi is a 2π -
periodic function.

The ROM (15) becomes singular when ρi → 0 [17].
To resolve this singularity, an explicit ROM in Carte-
sian coordinates has been derived in [17]. Specifically,
we rewrite the parameterization (13) in the form

qi = qi,se
iri�t = (qRi,s + iqIi,s)e

iri�t ,

q̄i = q̄i,se
−iri�t = (qRi,s − iqIi,s)e

−iri�t , (16)

for i = 1, · · · ,m, where qRi,s = Re(qi,s) and qIi,s =
Im(qi,s), then the reduced dynamics (59) on the SSM in
Cartesian coordinates (qRs , qIs) ∈ R

m ×R
m is obtained

as below [17]
(
q̇Ri,s
q̇Ii,s

)
= rci (qs,�, ε) + O(ε| p|)gci (φ) (17)

for i = 1, · · · ,m. Here, the superscript c stands for
‘Cartesian’; the explicit expression for rci can be found
in [17]; gci is a 2π -periodic function.

As shown in [17], any hyperbolic fixed point of the
leading-order truncation of (15) or (17), i.e.,
(

ρ̇i
θ̇i

)
= rpi (ρ, θ ,�, ε), i = 1, · · · ,m, (18)

or(
q̇Ri,s
q̇Ii,s

)
= rci (qs,�, ε), i = 1, · · · ,m, (19)

corresponds to a periodic solution p(t) of the reduced
dynamics (59) on the SSM,W(E,�t). In addition, the
stability type of a hyperbolic fixed point of (18) or (19)
coincides with the stability type of the corresponding
periodic solution onW(E,�t) [17].

Therefore, we can obtain periodic orbits of the full,
high-dimensional system (5) as fixed points of the low-
dimensional SSM-based ROM given by (18) or (19).
This simplification enables us to compute the FRS via
analytic prediction ormulti-dimensionalmanifold con-
tinuation of fixed points of the ROM, as we detail in
the next section. In addition, it enables us to convert
the optimization problems 1 and 2 into algebraic opti-
mization problems, as we will show in Sect. 5.
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4 Computation of FRS via SSM-based ROMs

4.1 Simplification of response amplitude

We now derive an explicit expression for the response
amplitude of the periodic orbit of the full system (5).
For a fixed point of the ROM (18) or (19), we obtain
the corresponding periodic orbit of the full system as
[16,17]

z(t) ≈ W( p(t)) + ε
(
x0ei�t + x̄0e−i�t

)
, (20)

where W is a polynomial function of p and x0 is the
solution to a system of linear equations below [16,17]

(A − i�B)x0 = BW Is
+
0 − Fa. (21)

Here, s+0 and Fa are independent of� and their explicit
expressions are available in [17]. We have used a
leading-order truncation of the non-autonomous part
of the SSM in (20), which is consistent with the trun-
cation in the ROMs (18) and (19).

For ε � 1, one may simply approximate the SSM
expansion (20) as

z(t) ≈ W( p(t)), (22)

which avoids the need to solve the linear system (21).
Indeed, solving system (21) can be computation-
ally expensive, especially if the full system is high-
dimensional, as we must repeat this computation for
every different value of� [17]. The approximation (22)
has also been adopted in the method of normal forms
[29,30]. In this study, we refer to the SSM solution
as time-independent (TI) if (22) is used and as time-
varying (TV) if (20) is used. In practice, some sam-
ples of � near the external resonance can be taken and
SSM solutions z(t) in (22) and (20) can be compared
to decide whether TI SSM solutions are sufficient or
TV SSM solutions are required.

Substituting relations (20), (13), and (14) or (16)
into (7), the functional AL2(z(t)) can be simplified as

AL2( y,�, ε) =
√ ∑

r̂i∈R̂
ŵ

∗
r̂i ,I Qŵr̂i ,I , (23)

where y = (ρ1, θ1, · · · , ρm, θm)or y = (qR1,s, q
I
1,s, · · · ,

qRm,s, q
I
m,s), depending on the choice of polar or

Cartesian coordinates. The detailed derivation of (23)
is given in Appendix B, where we let W( p) =∑

(c,d) w(c,d)qcq̄d and R̂ = {r̂ : r̂ = (c− d) · r}.
Similarly, zopt in (8) can be simplified as

Aopt( y,�, ε, t) =
∑

r̂i∈R̂
ŵr̂i ,opte

ir̂i�t , (24)

where

ŵr̂i =

⎧
⎪⎪⎨

⎪⎪⎩

wcor
r̂i

+ εx0, if r̂i = 1

wcor
r̂i

+ ε x̄0, if r̂i = −1

wcor
r̂i

, otherwise.

(25)

Here wcor
r̂i

∈ C
2n with the superscript cor ∈ {p, c};

ŵr̂i ,I ∈ C
|I| and ŵr̂i ,opt ∈ Cwith subscript ’opt’ refer-

ring to the corresponding entries from the vector ŵr̂i .
Depending on the choice of parameterization coordi-
nates (cor = p for polar coordinates (14) and cor = c
for Cartesian coordinates (16)), we have

w
p
r̂i

=
∑

(c,d)∈Ti

w(c,d)ρ
c+dei(c−d)·θ ,

wc
ri =

∑

(c,d)∈Ti

w(c,d)q
c
s q̄

d
s , (26)

where Ti = {(c, d) : r̂i = (c− d) · r}.
The explicit expressions of the response amplitude

depend on the coefficients, w(c,d), of the SSM expan-
sion W( p). Moreover, we need the expansion coeffi-
cients in the ROMs (18) and (19). The automated com-
putational procedure for obtaining these coefficients
is documented in [16] and implemented in an open-
source package SSMTool [31]. We use SSMTool to
obtain these coefficients. Following [17,20], we deter-
mine the truncation order ofW( p) based on the conver-
gence of forced responses under increasing expansion
orders.

4.2 Analytical FRS via two-dimensional SSM-based
model reduction

We construct two-dimensional SSM-based ROMs for
systems without internal resonances. In this case, we
drop the subscript i = 1becausem = 1 and the reduced
dynamics (18) becomes [16]

ρ̇ = a(ρ) + ε (Re( f ) cos θ + Im( f ) sin θ) ,

θ̇ = b(ρ) − � + ε

ρ
(Im( f ) cos θ − Re( f ) sin θ) (27)

where f is a complex constant associated with the
shape of the forcing and themaster mode, and a(ρ) and
b(ρ) are polynomial functions. Solving for the fixed
points of (27) (by letting ρ̇ = θ̇ = 0), we obtain peri-
odic orbits of the full system. These fixed points lie on
the zero-level set of the functional [16]
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F(ρ,�, ε) := a2(ρ) + (b(ρ) − �)2ρ2 − ε2| f |2.
(28)

Thus, the response surface in reduced coordinates is
a two-dimensional manifold of zeros of F(ρ,�, ε).
Mapping this surface to physical coordinates via (23)
or (24), we obtain the FRS.

4.3 Two-dimensional manifold continuation

For systems with internal resonances, higher-dim-
ensional SSM are required for model reduction. In
that case, the analytic prediction of FRS via (28) is
not available. Hence, we use a two-dimensional man-
ifold continuation algorithm to numerically cover the
FRS. This method works alike for two-dimensional or
higher-dimensional SSM-based ROMs.

Specifically, we use the Henderson algorithm [7] to
cover the FRS. In this algorithm, the solution manifold
is characterized via a piecewise-polyhedral approxi-
mate tessellation. Henderson’s algorithm has already
been implemented in the software package coco. Here
we use this package for the computation of the FRS.
This two-dimensional manifold is represented by an
atlas of charts. Each of these charts is characterized by
four components [10,14]: a base point on the manifold,
the tangent space of the manifold at the base point, a
polygon in the tangent space that belongs to the approx-
imate tessellation, and a radius of the circular bounding
region (see Fig. 13.2 of [14] formore details). In param-
eter continuation, new charts are constructed from old
charts in the expansion stage and these new charts are
mergedwith old charts in the consolidation stage.More
details about the expansion and consolidation stages
can be found inChapter 13 of [14] (see Figs. 13.2−13.3
of [14] for schematic plots).

We use March, 2020-release of coco [9] to per-
form this parameter continuation. The multidimen-
sional continuation algorithm implemented in this
release is well-documented in [10]. In particular, the
expansion stage is performed on the full set of prob-
lem variables, whereas the consolidation stage is con-
ducted in a space defined by active continuation param-
eters. This decoupling is crucial for adaptive problems
where the number and meaning of unknowns change
dynamically [10]. Since we perform continuation of
fixed points of the SSM-based ROMs, adaptive prob-
lems are not involved. Thus, the parameter continuation

here can also be conducted via other releases of COCO
or other packages that support multidimensional con-
tinuation. To accommodate the multidimensional con-
tinuation algorithm, however, we need to introduce
some continuation parameters. In coco, continuation
parameters are used to track the values of the monitor
functions defined along the solution manifold. Here,
we define the set of active continuation parameters
as ( y,�, ε,A), i.e., the parameterization coordinates
y, the excitation frequency and amplitude, and some
observable A such as (7) and (8) (we use their sim-
plifications in (23) and (24)). In the case of Cartesian
coordinates for y, we also define monitor functions for
their magnitudes to obtain the FRS in reduced coordi-
nates. Since y and A are implicit functions of � and ε,
the solution manifold is indeed two-dimensional.

5 Optimization via SSM-based ROMs

In the above section, we have successfully transformed
the computation of the FRS of periodic orbits into the
computation of a two-dimensional manifold of fixed
points of an appropriate SSM-based ROM. However,
the computational cost of such a two-dimensional man-
ifold is still high relative to that of a one-dimensional
manifold. At the same time, the ridges and trenches of
an FRS are one-dimensional curves that characterize
the skeleton of the FRS. Next, we provide a fast com-
putation procedure to locate these ridges and trenches
without the need to compute the entire FRS. As we
will see from numerical examples in Sect. 7, the com-
putational time for locating these ridges and trenches is
indeed much smaller than that of computing the FRS.

Recall that the ridges and trenches of the FRC can be
located via formulated optimization problems 1 and 2.
With the simplified objective functions given in (23)
and (24), we are now ready to construct reduced opti-
mization problems for Problems 1 and 2. Recall that y
is a fixed point of the ROM (18) or (19). Therefore, the
original optimization problems 1 and 2with constraints
in the form of high-dimensional differential equations
are reduced to optimization problems with a few alge-
braic constraints. In particular, we have the following
reduced algebraic optimization problem for the original
dynamic optimization problem 1.

Problem 3 Find ε ∈ [εlb, εub] and � ∈ [�lb,�ub]
that renders AL2( y,�, ε) stationary under the con-
straints that h( y, ε,�) = 0 are satisfied. Here h :
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R
2m × R × R → R

2m collects the vector field
for y. Specifically, in the case of the polar coordi-
nates, we have y = (ρ1, θ1, · · · , ρm, θm) and h =
(rp1, · · · , rpm). For Cartesian coordinates, we have y =
(qR1,s, q

I
1,s, · · · , qRm,s, q

I
m,s) and h = (rc1, · · · , rcm).

The constraint manifold defined by h = 0 is two-
dimensional and can be parameterized by the excitation
frequency � and the amplitude ε. Therefore, we have
an FRS in the space (ε,�, AL2 ). For a given forcing
amplitude ε = εo, the response surface is reduced to
an FRC. The local extrema of the FRC are stationary
points of Problem 3 restricted to ε = εo. As ε varies,
these stationary points can be connected to form curves
that define the ridges and trenches on the FRS.

We note that we have included ε as a design vari-
able in Problem 3. This augmentation enables us to use
a successive parameter continuation technique [24–26]
to extract the ridges and trenches directly. In particular,
we need to compute only one FRC with this technique.
We first perform continuation with respect to � keep-
ing ε fixed to obtain this FRC. To locate the ridges and
trenches, we then perform continuation of the extrema
on this FRC, allowing � and ε to change freely. This
continuation is achieved through an augmented contin-
uation problem consisting of both original constraints
and adjoint equations [25,32]. We provide a detailed
discussion of this successive continuation method in
Sect 6.

Similarly to Problem1, we obtain a reduced alge-
braic optimization problem for the dynamic optimiza-
tion Problem 2 as

Problem 4 Find t ∈ [0, T ], ε ∈ [εlb, εub] and
� ∈ [�lb,�ub] that render Aopt( y,�, ε, t) stationary
under the constraints that h( y, ε,�) = 0 are satisfied.

Problem 4 above seeks stationary solutions of the
objective function Aopt in (�, ε, t)-space. We first
locate the time t at which the periodic signal Aopt

reaches its maximum magnitude (cf. (8)) for a given
(�, ε). Similarly to the solution procedure of Prob-
lem 3, we then compute an FRC by fixing ε and allow-
ing � to change. Finally, upon locating the extrema on
this FRC, we again set ε as a free parameter to locate
the ridges and trenches on the FRS. Further details of
this procedure are given in Sect. 6.

6 Locating ridges and trenches using parameter
continuation

In this section, we show how to locate the ridges and
trenches of an FRS by solving the reduced optimiza-
tion problems 3 and 4 via successive continuation [24–
26]. Here, we use the method of Lagrange multipli-
ers to recast the constrained optimization problems 3
and 4 into unconstrained ones. We also derive the con-
ditions necessary for an optimal solution,which depend
on the design variables and the Lagrange multipliers.
Remarkably, these conditions are linear and homoge-
neous with respect to the Lagrange multipliers, which
is essential for successive continuation, as we obtain
trivial Lagrange multipliers in the initial continuation
run. Moreover, these multipliers also facilitate sensi-
tivity analysis.

6.1 Solution to Problem 3

We introduce a Lagrangian

LL2 = μAL2 + ηAL2 (AL2 − μAL2 ) +
ηε(ε − με) + η�(� − μ�) + λ�h. (29)

where (μAL2 , με, μ�) are auxiliary parameters and
(ηAL2 , ηε, η�,λ) are Lagrangianmultipliers. Equating
the derivatives of LL2 to zero, we obtain

AL2 − μAL2 = 0, ε − με = 0, � − μ� = 0, h = 0, (30)

∂AL2

∂ y
ηAL2 +

(
∂h
∂ y

)�
λ = 0, (31)

∂AL2

∂�
ηAL2 + η� +

(
∂h
∂�

)�
λ = 0, (32)

∂AL2

∂ε
ηAL2 + ηε +

(
∂h
∂ε

)�
λ = 0, (33)

1 − ηAL2 = 0, and ηε = η� = 0. Here, (30) rep-
resents constraints and (31)-(33) provides the adjoint
equations. Due to the introduction of auxiliary param-
eters, the adjoint equations obtained are homogeneous
and linearwith respect to the Lagrangemultipliers [25].
This enables us to construct an initial solutionwith triv-
ial Lagrangemultipliers. Explicit gradients of AL2 with
respect to y, � and ε are given in Appendix C.

A continuation problem is constructed with the first-
order necessary conditions (30)-(33). The ridges and
trenches in the FRS are obtained using a successive
continuation technique as follows:
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1. Detect extrema along the FRC for a given ε. With
ηAL2 = ηε = η� = 0 and λ = 0, the adjoint
equations (31)-(33) are automatically satisfied and
an FRC is obtained in the constraint manifold with
fixed ε and free � ∈ [�lb,�ub]. Along the FRC,
the extrema of AL2 within the interval [�lb,�ub]
are detected as fold points.

2. Perform continuation along the secondary branches
until ηAL2 = 1. The fold points above are
also branch points [24,26]. Along the secondary
branch that passes through each branch point, the
design variables ( y, ε,�) do not change, while
theLagrangemultipliers (ηAL2 , ηε, η�,λ)vary lin-
early [26]. Therefore, at each branch point, we
switch the continuation from the primary branch to
the secondary branch. We continue along the sec-
ondary branch until ηAL2 = 1. We proceed to the
next step once ηAL2 = 1 is obtained for each of the
continuation runs along the secondary branches.

3. Release ε to locate ridges and trenches. We fix
ηAL2 = 1 and allow ε to vary, which yields another
one-dimensional manifold that defines the ridges
and trenches. This is because ηAL2 = 1 and η� = 0
along this curve. Furthermore, if ηε = 0 at a point
along the curve, then that point corresponds to a
stationary solution on the FRS. We stop this con-
tinuation run once ε reaches the endpoints of the
interval [εlb, εub].
From a geometric perspective, we require (for any

fixed ε)

DAL2

D�
= ∂AL2

∂�
+

(
∂AL2

∂ y

)�
∂ y
∂�

= 0 (34)

to locate a point on the ridges/trenches of the FRS.
Next, we show that (34) holds during Step 3 of our
procedure above. In Step 3, we have ηAL2 = 1 and
η� = 0. Substituting these values into (31) and (32),
we obtain

∂AL2

∂ y
= −

(
∂h
∂ y

)�
λ,

∂AL2

∂�
= −

(
∂h
∂�

)�
λ. (35)

Along the constraintmanifold (for anyfixed ε),we have

Dh( y,�) =
(

∂h
∂ y

)
∂ y +

(
∂h
∂�

)
∂� = 0 (36)

and hence,

∂ y
∂�

= −
(

∂h
∂ y

)−1 (
∂h
∂�

)
. (37)

Substituting (35) and (37) into (34) yields (for any fixed
ε)

DAL2

D�
= ∂AL2

∂�
+

(
∂AL2

∂ y

)�
∂ y
∂�

= −
(

∂h
∂�

)�
λ + λ�

(
∂h
∂ y

)(
∂h
∂ y

)−1 (
∂h
∂�

)
≡ 0.

(38)

Thus, (34) indeed holds, and the solutions from Step
3 of our procedure lie on the ridges or trenches of the
FRS.

6.2 Solution to Problem 4

We introduce a Lagrangian

Lopt = μAopt + ηAopt (Aopt − μAopt ) + ηt (t − μt )

+ ηε(ε − με) + η�(� − μ�) + λ�h. (39)

where (μAopt , μt , με, μ�) are auxiliary parameters
and (ηAopt , ηt , ηε, η�,λ) are Lagrangian multipliers.
Equating the derivatives of Lopt to zero yields

Aopt − μAopt = 0, t − μt = 0, ε − με = 0, (40)

� − μ� = 0, h = 0, (41)

∂Aopt

∂ y
ηAopt +

(
∂h
∂ y

)�
λ = 0, (42)

∂Aopt

∂t
ηAopt + ηt = 0, (43)

∂Aopt

∂�
ηAopt + η� +

(
∂h
∂�

)�
λ = 0, (44)

∂Aopt

∂ε
ηAopt + ηε +

(
∂h
∂ε

)�
λ = 0, (45)

1 − ηAopt = 0, and ηt = ηε = η� = 0. Here, (40)-
(41) represent the original constraints and (42)-(45)
provide the adjoint equations. Similarly to the previ-
ous case, we have introduced auxiliary parameters such
that the adjoint equations are homogeneous and linear
with respect to the Lagrange multipliers. Explicit gra-
dients of Aopt with respect to y, � and ε are given in
Appendix C.

A continuation problem is constructed with the first-
order necessary conditions (40)-(45). Likewise, the
ridges and trenches on the FRS are obtained using a
successive continuation technique as below
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1. Find the amplitude of a periodic orbit for given ε

and�.With ηAopt = ηt = ηε = η� = 0 andλ = 0,
the adjoint equations (42)-(45) are automatically
satisfied, and a periodic orbit is obtained for the
given ε and�, along which extrema of Aopt for t ∈
[0, T ] are detected as fold points. We identify the
fold point with maximum magnitude, which gives
the amplitude of the periodic orbit.

2. Perform continuation along the secondary branch
until ηAopt = 1. The fold point above is also a
branch point [24,26]. Along the secondary branch
passing through the branch point, the design vari-
ables ( y, ε,�) do not changewhereas the Lagrange
multipliers (ηAopt , ηε, η�,λ) vary linearly [26].We
perform branch switching and continue along the
secondary branch until ηAopt = 1.

3. Release � and perform continuation until η� = 0.
Once ηAopt = 1 is obtained, we fix ηAopt = 1 and
allow � to vary within [�lb,�ub] to produce an
FRC. This is because ηAopt = 1 and ηt = 0 along
this curve. If η� = 0 is detected at a point along the
curve, this point corresponds to a stationary solu-
tion on the FRC. Along the FRC, several stationary
points may be detected. We move on to Step 4 for
each of these stationary points.

4. Release ε to locate ridges and trenches. Starting
from a stationary point on the FRC obtained in Step
3, we fix η� = 0 but allow ε to vary to obtain a
one-dimensional manifold defining the ridges and
trenches of the FRS. This is because ηAopt = 1 and
ηt = η� = 0 along this one-dimensional manifold.
We terminate this continuation run once ε reaches
the endpoints of the interval [εlb, εub].
From a geometric point of view, we require (for any

fixed ε)

DAopt

D�
:= ∂Aopt

∂�
+

(
∂Aopt

∂ y

)�
∂ y
∂�

= 0,
∂Aopt

∂t
= 0

(46)

to locate a point on the ridges/trenches of the FRS.
We need to show that (46) holds in Step 4 of the
above procedure. In this step, we have ηAopt = 1 and
ηt = η� = 0. Substituting ηAopt = 1 and ηt = 0
into (43) yields ∂Aopt/∂t = 0. Next, we show that
DAopt/D� = 0 in Step 4 of the above procedure. We
substitute ηAopt = 1 and η� = 0 into (42) and (45),
yielding

∂Aopt

∂ y
= −

(
∂h
∂ y

)�
λ,

∂Aopt

∂�
= −

(
∂h
∂�

)�
λ. (47)

Along the constraint manifold (for any fixed ε), (36)
still holds. Then we can easily show DAopt/D� =
0 similarly to (38). Thus, (46) indeed holds, and the
solutions from Step 4 of our procedure lie on ridges or
trenches of the FRS.

Remark 2 In numerical experiments, we observed that
when the continuation run in Step 3 approaches a
saddle-node (SN) bifurcation point on the FRC, the
design variables barely change while the Lagrange
multiplier changes considerably. At an SN point, we
have ηAopt = 1 and ∂h/∂ y is singular. We deduce
from (42) that |λ| → ∞ when ∂h/∂ y becomes sin-
gular and ηAopt �= 0. This explains the observation
because ηAopt ≡ 1 along the FRC. Therefore, we need
to select initial points such that fold points can be found
along a segment of the FRC that does not contain any
SN points. This is feasible since the fold points do not
exactly coincide with the SN points.

7 Examples

7.1 A cantilever beam with nonlinear support

7.1.1 Example setup

We consider a cantilever beam with a cubic spring and
a cubic damper support at its free end [5]. The beam
is modeled using Bernoulli beam theory, and hence the
only nonlinearity in this example comes from the sup-
port spring and damper. The reaction force of the sup-
port is modeled as

F = κw3 + γ ẇ3, (48)

where w is the transverse displacement at the free end,
F is the reaction force, and κ and γ denote the coef-
ficients of the cubic spring and damper. We apply a
harmonic excitation ε cos�t at the free end and calcu-
late the FRS. Here, we use the amplitude functional

||w||L2 =
√

1

T

∫ T

0
w2(t)dt (49)

to characterize the response of the beam. Note that
||w||L2 is a special case of the L2 norm-based objec-
tive (7).

The geometric and material properties of this beam
are the same as those in [5]. In particular, the width,
height, and length of the beam are 10mm, 10mm, and
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2700mm, respectively, and the density and Young’s
modulus of the material are 1780× 10−9 kg/mm3 and
45 × 106 kPa. We use a classic finite element scheme
to discretize this beam. Specifically, two degrees of
freedom, namely, the transverse displacement and the
rotation angle, are introduced at each node. At each ele-
ment, the displacement field is approximated with Her-
mite interpolation. The resulting equations of motion
for the discretized beam model are given as

Mẍ + Cẋ + Kx + N(x, ẋ) = ε f cos�t, (50)

where x ∈ R
2Ne is the assembly of all degrees of free-

dom with Ne being the number of elements used in the
discretization, M, C and K are the mass, damping and
stiffness matrices, respectively, N collects the nonlin-
ear internal force vector due to (48), and f denotes
the external force vector associated with the harmonic
excitation. Here, we use the Rayleigh damping hypoth-
esis C = αM + βK with α = 1.25 × 10−4 s and
β = 2.5 × 10−5 s−1 [5]. The coefficients of cubic
spring and damper are chosen as κ = 6mN/mm3 and
γ = −0.02mNs/mm3.

In the following computations, the beam is uni-
formly discretized with 25 elements (Ne = 25) and
hence the system has 50 degrees of freedom and a 100-
dimensional phase space. In this case, the eigenvalues
corresponding to the slowest eigenspace are

λ1,2 = −0.0062 ± 7.0005i. (51)

We take the slowest eigenspace as the master subspace
E , construct two-dimensional SSM-based ROMs, and
use them to extract ridges and trenches on the forced
response surface of this system. Here, we set εlb =
1× 10−4 and εub = 0.01, �lb = 6.96 and �ub = 7.04
to limit the domain of the FRS.

7.1.2 TI-SSM vs. TV-SSM solutions

We first set ε = εub and compute the FRC of the sys-
tem based on TV-SSM solution (20) and TI-SSM solu-
tion (22) to check whether TI-SSM is accurate enough.
We find that O(5) expansion is sufficient to approxi-
mate the converged FRC. As seen in Fig. 2, the FRC
based on the TI-SSM solution matches that of the TV-
SSM solution.We conclude that the TI-SSMbased pre-
dictions have sufficient accuracy. Hence, we will use
the TI-SSM solution (22) in the rest of this example.

Fig. 2 FRC for the amplitude of periodic orbits at the end of
the cantilever beam with ε = εub = 0.01. Here and throughout
this paper, O(k) denotes that the expansion truncation order for
W( p) in (20) and (22), namely, the autonomous part of SSM, is
equal to k. TV-SSM and TI-SSM correspond to (20) and (22),
respectively. The blue lines coincide well with the red lines such
that the red lines are nearly invisible. (Color figure online)

7.1.3 FRS: analytic prediction, parameter
continuation, and validation

Now we compute the FRS of the system using both
the analytic prediction in Sect. 4.2 and the multidimen-
sional atlas algorithm in Sect. 4.3. The FRS obtained
is shown in Fig. 3. In the upper panel, we show the
FRS obtained from the analytic prediction, which took
7s of computational time. In the lower panel, the FRS
obtained from the multidimensional continuation algo-
rithm is shown, where the surface is approximated with
1500 polygons. The computational time for obtaining
this FRS is about half an hour. We note that isolas (cf.
the tip pointed by the green arrow in the left panel) are
uncovered automatically via the FRS. By comparing
the two panels, we observe that polygons near the isola
region have much smaller sizes relative to other poly-
gons away from the region. This non-uniform mesh is
a result of the adaptation of continuation step sizes in
the atlas algorithm. In contrast, we have used uniformly
distributed grids to generate the analytic FRS. To cap-
ture the intricate surface around the tip, we used a fine
mesh (with 42,538 faces) for the analytic FRS.

To validate the above FRS obtained from SSM-
based ROMS, we compute the FRCs of the full system
sampled at ε ∈ {1 × 10−3, 2 × 10−3, 4 × 10−3, 6 ×
10−3, 8×10−3, 1×10−2} using the collocationmethod
implemented in the po-toolbox of coco.We choose the
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Fig. 3 Forced response surface of the cantilever beam with
nonlinear support, obtained from the analytic prediction (upper
panel), and multidimensional continuation of fixed points (lower
panel). Some sampled FRCs of the full system are also presented
for the purpose of validation. In the lower panel, ridges, and
trenches on the FRS are also provided. Here and throughout this
paper, gray andmagenta areas indicate stable and unstable forced
responses and solid and dashed lines represent stable and unsta-
ble periodic solutions. (Color figure online)

direct computation of FRCs instead of the FRS for val-
idation because the computational cost of the FRS for
such a high-dimensional system is significant. As seen
in Fig. 3, the six sampled FRCs agree with the FRS
obtained from SSM-based reduction. We note that the
computational time for the sampled FRCs is about 6h,
which shows a significant speed-up using the SSM-
based reduction.

7.1.4 Ridges and trenches: computation, validation,
and global bifurcation

Next, we compute the ridges and trenches of the FRS
using the solution procedure established in 6.1. As

we will see, the computational time for locating these
ridges and trenches via the successive continuation is
just 31 s, much less than the half hour required for gen-
erating the entire FRS via the two-dimensional mani-
fold continuation.

We initialize ε = εub and apply the successive
continuation scheme to locate the ridge on the forced
response curve. Indeed, we have a maximum point on
the FRC shown in Fig. 2. We expect a ridge consisting
of this maximum under the variation of ε. The maxi-
mum point is detected as a branch point and denoted by
a blue cross marker on the red curve shown in Fig. 4.
We follow the procedure in 6.1 and obtain the ridge as
expected. This ridge is plotted in a blue dashed line and
marked as (I) in Fig. 4. All periodic orbits are unstable
along this ridge, which is depicted by our use of the
dashed line.

We note that the response along the ridge does not
decrease to zero when ε → 0. This indicates that the
system admits a limit cycle in an unforced case and
undergoes an isola bifurcation when ε → 0, as illus-
trated in Fig. 5. Consequently, one can use the obtained
ridges and trenches on the forced response surface to
infer isola bifurcations.

We expect that the systemhas another family of peri-
odic orbits under the addition of harmonic excitation.
These periodic orbits are perturbed from the origin,
which is a hyperbolic fixed point, and the response
amplitude of these periodic orbits will decrease to zero
when ε → 0. We initialize with ε = 0.001 and
� = 6.96 and apply the solution procedure established
in 6.1 to locate the ridge on the FRS that corresponds
to this family of periodic orbits. As seen in Fig. 4, the
FRC for ε = 0.001 consists of a maximum, which lies
on a ridge shown as the brown solid curve marked as
(II). Indeed, the response along this ridge decreases to
zero when ε → 0, as seen in Fig. 4.

In the last continuation run to generate segment (II)
of the ridge, we found that when ε increases to a critical
value of εsimp ≈ 1.8020×10−3, it cannot be increased
further, as shown in the lower-right panel of Fig. 4.
This critical value corresponds to a simple bifurcation
illustrated in Fig. 5. At the simple bifurcation, the pri-
mary branch of the FRC is merged into the isolated
(detached) branch. Consequently, the maximum on the
primary branch merges with the minimum on the iso-
lated branch when ε → εsimp. Moreover, these two
extrema disappear when ε > εsimp. This explains why
ε cannot be increased further than εsimp along segment
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Fig. 4 Frequency response curves and resulting ridges and
trenches in the forced response surface of the cantilever beam
with cubic spring and damper support. The lower two panels

give the projection of the upper panel onto (�, ||w||L2 ) and
(ε, ||w||L2 ). (Color figure online)

(II). Therefore, we can also use the obtained ridges and
trenches to infer simple bifurcations.

As seen in Fig. 5, there is a local minimum in the
isolated branch of an FRC.We initialize with a point on
the segment (I) (ε = 0.000855) and apply the solution
procedure established in 6.1 to locate the trench on the
FRS corresponds to this family of local minima. This
trench is plotted in a green dashed line in Fig. 4 and
marked with (III). We see that segments (I) and (III)
intersect at ε = 0 where the isola bifurcation occurs.
In addition, segments (III) and (II) merge smoothly at
ε = εcusp, where the simple bifurcation is observed, as
seen in the lower-right panel of Fig. 4.

We now provide a validation of the ridges and
trenches obtained via our SSM-based ROMs.We apply

Fig. 5 A schematic plot of isola and simple bifurcations

the collocationmethod implemented in coco [9,14,32]
to solve for Problem 1. In particular, the po-toolbox
supports an automated construction of adjoint equa-
tions of periodic orbits [25]. We follow a successive
continuation method similar to the procedure in 6.1 to
locate the ridges and trenches on the FRS of the full
system. As seen in Fig. 6, the results from the col-
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Fig. 6 Ridges and trenches obtained from SSM-based predic-
tions (lines) and collocation methods (markers) applied to the
full system. Here the magenta squares and red circles denote
unstable and stable periodic orbits, respectively. The projection
of these curves onto the three coordinate planes is also shown
here. (Color figure online)

location methods agree with the predictions from our
SSM-based ROM. Here, the computation time of the
collocation method on the full systems is nearly 1.5
days, while that of the SSM-based prediction is just
about 31 s.

7.2 A square plate with 1:1 internal resonance

7.2.1 Example setup

As our second example, we consider a simply sup-
ported plate shown in the upper panel of Fig. 7 [17,20].
Here, a and b give the length and width of the plate.We
are interested in the case of a square plate, i.e., a = b,
such that the second and third bending modes of the
system satisfy a 1:1 internal resonance because of the
plate’s geometric symmetry.

We model this square plate using von Kármán the-
ory and hence the system has distributed nonlinearity,
which is different from the previous example. In partic-
ular, both the in-plane and out-of-plane displacements
are considered as unknowns, and nonlinear stretching
forces due to large transverse displacement are taken
into account. The nonlinear equations governing the
motion of the plate can be found in [33].

We use flat facet shell elements developed in [34,35]
to discretize the unknown displacement field of this
plate. Specifically, we use triangular elements to dis-

Fig. 7 A simply supported rectangular plate and a mesh for a
square plate (a = b) [17]

cretize the domain. An illustration of the mesh gen-
erated using the triangular elements is shown in the
lower panel of Fig. 7. Here, we have 200 elements.
Six degrees-of-freedom (DOFs) are introduced at each
node of an element.With the boundary conditions from
the simple supports applied, this discretemodel has 606
DOFs, resulting in a 1212-dimensional phase space.
The discretemodel obtained is of the same formas (50).
We use an open-source finite element package [36] to
obtain the mass and stiffness matrices and the non-
linear internal force vector. For the damping matrix,
we again consider the Rayleigh damping hypothesis
C = αM + βK with α = 1 and β = 4 × 10−6.

We apply a transverse excitation ε100 cos�t at
point A (cf. the lower panel of Fig. 7) and study the
forced response of the system under variations in ε and
�. We use the same geometric and material parameters
as those in [17]. The natural frequencies of the second
and third bendingmodes of the finite elementmodel are
obtained as ω2 ≈ 763.6 rad/s and ω3 ≈ 767.7 rad/s.
Their vibrationmode shapes are shown in Fig. 8, where
we see that points A and B represent the response of the
third and second bending modes (cf. the lower panel of
Fig. 7). We consider three measures to characterize the
response of the system:

||wA||L2 =
√

1

T

∫ T

0
w2
A(t)dt,

||wB||L2 =
√

1

T

∫ T

0
w2
B(t)dt,
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Fig. 8 Mode shapes of the second and third linear bending
modes of the simply supported square plate [17]. (Color figure
online)

||Ek||L2 =
√

1

2T

∫ T

0
ẋTMẋdt, (52)

where wA and wB denote the transverse displacements
at points A and B, and Ek gives the kinetic energy of
the plate.

With the Rayleigh damping assumption, two pairs
of complex conjugate eigenvalues associated with the
second and the third bending mode are given as

λ3,4 ≈ −1.7 ± i763.6 ≈ ±iω2,

λ5,6 ≈ −1.7 ± i767.7 ≈ ±iω3. (53)

We take the four-dimensional spectral subspace corre-
sponding to these eigenvalues as the master subspace
E for SSM-based model reduction. In the following
computations, we set �lb = 0.95Im(λ3) = 725.4 and
�ub = 1.15Im(λ3) = 878.1. For the forcing ampli-
tude, we take εlb = 0.01 and εub = 1.

7.2.2 TI-SSM vs. TV-SSM solutions

Similarly to the previous example, we compare the
FRCs obtained from the TV-SSM solution (20) and
the TI-SSM solution (22) to conclude that the TI-SSM
solution sufficiently approximates the converged FRC.
We set ε = εub and compute the corresponding FRC,
where the predictions from TI-SSM agree with those
from TV-SSM as shown in Fig. 9. Here, we use an
O(5) expansion for the SSM and its reduced dynamics
to obtain predictions with sufficient accuracy [17].

7.2.3 FRS: computation and validation

Next, we compute the FRS for three amplitude objec-
tives in (52). As our analytic results for FRS
predictions are only available for two-dimensional
SSMs, we employ numerical continuation of fixed
points of the reduced dynamics to compute the FRS
associatedwith the four-dimensional SSM(seeSect. 4).
The FRS obtained is shown in Fig. 10. We observe
that the FRS has a complicated geometry with self-
intersections for sufficiently large values of ε (also see
Fig. 9). Here, the FRS is approximated via roughly
10,000 polygons, adaptively determined by the multi-
dimensional continuation algorithm.

We now validate the FRS obtained by our SSM-
based ROM against the FRCs of the full system for the
samples of the forcing amplitude ε ∈ {0.25, 0.5, 0.75,
1}. The collocation technique employed for full-system
simulations in the previous example is not feasible here
due to the large dimensionality of the full system [17].
As an alternative, we use a shooting method combined
with parameter continuation to calculate the FRCs of
the full system. Specifically, we use a coco-based
shooting toolbox [13] for validation, where the New-
mark scheme is used for the forward simulation. We
use 1,000 time steps per excitation period for numer-
ical integration [17]. At the same time, we increase
the maximum continuation step size from the default
value of 0.5 to 50 so that we can obtain the FRCs of
the full system in a reasonable amount of time. As seen
in Fig. 10, the FRCs obtained for the full system agree
with the FRS predicted by our SSM-based ROM. The
total computational time for the four FRCs in Fig. 10
is approximately 31 days. In contrast, we obtain the
entire FRS in just 2h.
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Fig. 9 Frequency response curves (amplitude of periodic
responses for the transverse displacement w at points A and
B) for the von Kármán plate discretized with 606 DOFs. Here
ε = εub = 1. TV-SSM and TI-SSM correspond to (20) and (22),
respectively. (Color figure online)

7.2.4 Ridges and trenches: computation and
validation

Now we compute the ridges and trenches on the FRS.
As we will see, we obtain these curves in 4min via the
SSM-based ROM, which is significantly less than the
twohours needed for the SSM-basedFRScomputation.
To locate the ridges and trenches on the FRS, we first
take ||wA||L2 as an optimization objective, initialize
ε = εub and apply the solution procedure established
in 6.1. Along the FRC for ε = εub, three extrema are
detected (two local maxima and one local minimum),
as shown by the blue markers in the top-right panel of
Fig. 11. Among the two maxima, we refer to the one

with a higher value of ||wA||L2 as the global maximum
and the other one as the local maximum. The trench
emanating from the minimum and the ridge associated
with the local maximum merge when ε decreases to
ε ≈ 0.525.We further observe that themerger of a ridge
and a trench results in their disappearance beyond the
point of merger. On the other hand, the ridge emanating
from the global maximum persists for ε ∈ (0, 1] and
the response amplitude along this ridge converges to
zero when ε → 0, as shown in the top-left panel of
Fig. 11.

Next, we take ||wB||L2 as the optimization objec-
tive and again apply the solution procedure established
in 6.1. In this case, five extrema are detected along
the FRC for ε = εub, as seen in the top-right panel
of Fig. 11. Here, we observe two extrema that are
close to each other within the circle. These two extrema
quickly merge and disappear when ε decreases below
ε = εub = 1. We also observe a ridge merging with a
trench as ε → 0.1332. Similarly to the previous case,
the ridge emanating from the global maximum persists
for ε ∈ (0, 1] and the response amplitude on this ridge
converges to zero when ε → 0.

Finally, we take ||Ek||L2 as the optimization objec-
tive and repeat the analysis above. We again detect five
extrema along the FRC for ε = εub, as seen in the lower
panel of Fig. 11. We observe that a ridge and a trench
merge near ε = 0.8466. Another ridge also merges
with the second trench near ε = 0.4905. Once again,
the ridge emanating from the global maximum persists
for ε ∈ (0, 1].

We plot the above-obtained ridges and trenches
along with the corresponding FRS in Fig. 10. As seen
in Fig. 10, these ridges and trenches located via the
successive continuation approach characterize the cor-
responding FRS’s skeleton. This validates the effec-
tiveness of the proposed method.

7.2.5 Dependence on optimization objective and
speed-up gain

We conclude from the above discussion that the geom-
etry of the FRS and its ridges and trenches depend on
the choice of the optimization objective, especially, for
mechanical systems with internal resonance. Indeed,
for internally resonant systems, the FRSs constructed
for modal response amplitudes may have significantly
different features. The modal contributions to the FRSs
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Fig. 10 FRSs and their ridges and trenches of the square plate.
The top left and right panels give the FRS in terms of ||wA||L2

and ||wB||L2 , while the lower panel gives the FRS for ||Ek ||L2 .
Some sampled FRCs (red lines) of the full system are also plot-

ted here for validation. We have rescaled ε and the amplitudes
properly such that the ranges of all these variables have compa-
rable magnitudes. This is important for the computation of these
FRSs. (Color figure online)

constructed for some physical response amplitudes can
change depending on the choice of the optimization
objective.

The computational times for generating the ridges
and trenches in the three panels of Fig. 11 are 60s,
65 s, and 155s, respectively. Indeed, these times are
significantly less than the two hours required to obtain
the entire FRS in Fig. 10. We observe in Fig. 10 that
the ridges and trenches provide a skeleton of the FRS.

7.3 A shallow shell with 1:2 internal resonance

7.3.1 Example setup

As our final example, we consider the nonlinear vibra-
tions of a shallow-arc structure [17], shown in Fig. 12.
Here, the shell is simply supported at the two opposite
edges aligned along the y−axis in Fig. 12.

The geometric and material properties of this shell
can be found in [17]. We use the same finite-element
model as in [17]. Specifically, the discrete model has
400 elements and 1,320 DOFs, resulting in a 2,640-
dimensional phase space. With the chosen curvature,
the first two bendingmodes of this structure admit a 1:2
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Fig. 11 FRCs (red lines) and resulting ridges and trenches (blue
lines) in the FRS of the square plate in terms of different char-
acterizations of response amplitude: ||wA||L2 (top-left panel),

||wB||L2 (top-right panel) and ||Ek ||L2 (lower-panel). Here red
lines are FRCs for ε = εub and blue markers are local extrema
on the FRCs. (Color figure online)

internal resonance [17]. In particular, the eigenvalues
of the first two pairs of modes of the discrete model are
given by [17]

λ1,2 = −0.30 ± i149.22, λ3,4 = −0.60 ± i298.78.

(54)

We apply a concentrated load ε100 cos�t in the z−
direction atmesh nodeAwith (x, y) = (0.25L , 0.5H).
We are concerned with the forced response in terms
of the z-displacements of node A and node B, where
node B is located at (x, y) = (0.5L , 0.5H). We set
�lb = 0.92Im(λ1) = 137.2857, �ub = 1.07Im(λ1) =
159.6693, εlb = 0.001, and εub = 0.1 to extract the
FRS around the first mode.

7.3.2 TI-SSM vs. TV-SSM solutions

Similarly to the previous two examples, we compare
the FRCs obtained from the TV-SSM solution (20) and
the TI-SSM solution (22) to conclude that the TI-SSM
solution sufficiently approximates the converged FRC.
Specifically, we set ε = εub and calculate the FRC
using the TI-SSMand TV-SSM solutions, whichmatch
closely, as shown in Fig. 13. Therefore, we use the TI-
SSM solutions to make faster FRS predictions in this
example.
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Fig. 12 The schematic of a shallow shell structure [16,17]

7.3.3 FRS: computation and validation

For FRS computation, we use the response amplitude
objectives ||wA||L2 , ||wB||L2 (see (52) for detailed def-
initions), as well as ||wA||L∞ and ||wB||L∞ . Similarly
to the previous example, we obtain the FRS shown in
Fig. 14 via the two-dimensional continuation of fixed
points of the SSM-based ROM. We again observe that
the geometry of the FRS depends on the choice of our
amplitude objective. Indeed, in Fig. 14, we observe a
local ridge near the primary trench in the FRS of point
B for sufficiently large values of ε, which is different
to the FRS of point A.

We now validate the FRS obtain via our SSM-based
ROM against the FRCs of the full system for the forc-
ing amplitude samples ε ∈ {0.02, 0.06, 0.1}. Similarly
to the previous example, we use the shooting method
combined with parameter continuation [13] to calcu-
late the FRCs of the full system. As seen in Fig. 14,
the three sampled FRCs lie close to the FRSs, which
validates the accuracy of the SSM-based predictions.
The computational times to obtain the three FRCs with
ε = 0.02, 0.06 and 0.1 are approximately 90, 146, and
180h, respectively.We have set the computational time
limit for each continuation run to be 180h. It turns out
that the continuation run for the FRC with ε = 0.1 was
terminated near � = 156 rad/s (see the arrows in the
left panels of Fig. 14) as it reached the set time limit.
On the other hand, we note that the computational time

Fig. 13 FRCs (amplitude of periodic responses for the trans-
verse displacement w at points A and B) for the shallow shell
discretized with 1320 DOFs. Here ε = εub = 0.1. TV-SSM and
TI-SSM correspond to (20) and (22), respectively. (Color figure
online)

to obtain the entire FRS via the SSM-based ROM is
only about 1.5h.

7.3.4 Ridges and trenches: computation and
validation

Next, we aim to obtain a skeleton of the FRS by com-
puting the ridges and trenches of the FRS at a frac-
tion of the cost associated with FRS computation. Tak-
ing ||wA||L2 as the optimization objective, initialize
ε = εub, we apply the solution procedure in Sect. 6.1
to obtain the ridges and trenches. We first compute the
FRC for ε = εub,where two localmaxima andone local
minimum are detected, as shown by the bluemarkers in
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Fig. 14 FRS and its ridges and trenches (blue lines) of the shal-
low shell. The top left and right panels give the FRS in terms
of ||wA||L2 and ||wB||L2 , while the lower left and right panels
give the FRS in terms of ||wA||L∞ and ||wB||L∞ . Some sampled

FRCs (red lines) of the full system are provided for the purpose
of validation. We have rescaled ε and the amplitudes properly
such that the ranges of all these variables have comparable mag-
nitudes. (Color figure online)

the upper-left panel of Fig. 15. Among the twomaxima,
the one with � ≈ 141 is the global maximum, while
the one with � ≈ 154 is a local maximum. The trench
associated with the local minimum merges with the
ridge emanating from the local maximum as ε → 0.
The remaining ridge persists as the global maximum
of FRCs in the computational domain and the response
amplitude ||wA||L2 converges to zero along this ridge
as ε → 0.

Wenowconsider the optimizationobjective ||wB||L2

and repeat the above computation of ridges and
trenches. For this optimization objective, five extrema
(three localmaxima and two localminima) are detected
along the FRC at ε = εub. As seen in the upper-right
panel of Fig. 15, a ridge-trench pair around � = 148

merges to disappear near ε = 0.035. Another ridge-
trench pair merges around ε = 0.006. Similarly to the
previous optimization objective, the ridge correspond-
ing to the global maximum persists in the computa-
tional domain, and the response amplitude along this
ridge converges to zero as ε → 0.

We plot the above-obtained ridges and trenches
along with the corresponding FRS in Fig. 14. We
observe in Fig. 14 that the ridges and trenches located
via the successive continuation approach provide a
skeleton of the corresponding FRS. This again vali-
dates the effectiveness of our proposed method that
combines SSM-based model reduction and parameter
continuation.
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Fig. 15 FRCs (red lines) and resulting ridges and trenches (blue
lines) in the FRS of the shallow shell. The upper left and right
panels show the results for ||wA||L2 and ||wB||L2 , while the

lower left and right panels present the results for ||wA||L∞ and
||wB||L∞ . (Color figure online)

7.3.5 Choice of norms and speed-up gain

Finally, we consider the amplitude objectives in the
L∞ norm instead of those in the L2 norm earlier. We
demonstrate the effectiveness of the solution procedure
proposed in Sect. 6.2 for the optimization objective
based on theL∞ norm. For the objective ||wA||L∞ , the
ridges and trenches are shown in the lower-left panel
of Fig. 15. We observe that the FRC in this panel is
terminated at two points that are very close to the inter-
section points of the two ridges and the FRC. These
two terminations occur due to a saddle-node bifurca-
tion on the FRC (see Remark 2). For the optimization
objective ||wB||L∞ , we obtain the ridges and trenches
shown in the lower-right panel of Fig. 15. By compar-
ing the upper and lower panels in Fig. 15, we observe

that the ridges and trenches are qualitatively similar for
the optimization objectives in the L2 and L∞ norms.

The computational times for generating the ridges
and trenches in the four panels of Fig. 15 are 71, 75, 77,
and81s,which is significantly less than the 1.5hused to
generate the entire FRS inFig. 14.Weobserve inFig. 14
that the ridges and trenches provide a skeleton of the
FRS. Therefore, to characterize the forced response, it
is worthwhile to compute only the ridges and trenches
of the FRS instead of the entire FRS.

8 Conclusion

We have developed a new, SSM-based approach for
computing the forced response surface (FRS) of har-
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monically excited high-dimensional mechanical sys-
tems including those with internal resonances. To
this end, we constructed low-dimensional reduced-
order models (ROMs) for such systems using spec-
tral manifolds (SSMs). We computed the FRS as a
two-dimensional manifold of fixed points of the SSM-
based ROMs. For systems without internal resonance,
we obtained analytic expressions for the FRS via the
SSM-based ROMs. For general systems with possible
internal resonances, we have used multidimensional
manifold continuation to cover the FRS as a manifold
of fixed points of the SSM-based ROMs. Since mani-
fold covering may still be a demanding task, we further
illustrated how to extract the ridges and trenches on the
FRS directly without computing the entire FRS. We
achieved this extraction via a successive continuation
technique applied to an augmented continuation prob-
lem that is derived from the first-order necessary con-
ditions of appropriately defined optimization problems
on the SSM-based ROMs. These ridges and trenches
serve as a skeleton of the FRS and their computation
provides a fast characterization of the FRS.

We have also demonstrated the accuracy and effi-
ciency of the SSM-based reduction method using three
examples. In the first example, a 50 DOF cantilever
beam with a nonlinear support spring and damper was
studied. This example demonstrates an analytic predic-
tion of the FRS via a ROM based on a two-dimensional
SSM. In addition, we showed that this FRS automati-
cally detects the existence and bifurcation of isolas in
the given range of forcing amplitude. We validated the
accuracy of our SSM-based FRS prediction against 6
sampled FRCs of the full system via the collocation
method. We also calculated the ridges and trenches of
the SSM-based FRS in 31s via the successive contin-
uation method. We validated these ridges and trenches
using the collocationmethod applied to an optimization
problem for periodic orbits of the full system, which
took approximately 1.5 days.

Next, we studied the forced response of a 606 DOF
von Kámán plate with 1:1 internal resonance. Here, we
constructed a 4-dimensional SSM-based ROM for this
internally resonant system. Based on the SSM-based
ROM,we computed the ridges and trenches on the FRS
in three minutes and the entire FRS in two hours. We
validated our SSM-based predictions using a shooting
method combined with parameter continuation to com-
pute four sampled FRCs of the full system, which took
more than 30 days.

In the last example, we investigated the forced
response of a 1,320-DOF shell structure with 1:2 inter-
nal resonance. We again constructed a 4-dimensional
SSM-based ROM for the system taking into account
the internal resonance. We computed the ridges and
trenches on the FRS via our SSM-based ROM in less
than 2min, and the entire FRS in 1.5h.We validated the
accuracy our SSM-based predictions against three sam-
pled FRCs of the full system calculated using the shoot-
ing method. The computational time for these three
FRCs was more than 17 days, which again shows the
significant speed-up gain from the SSM-based model
reduction.

The computations performed in this study can be
applied to systems with configuration constraints [37]
as well. While we have computed the FRS of periodic
orbits in this work, it is instructive to extend this proce-
dure to the computation of FRS of quasi-periodic orbits
[20].
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A Theorem on periodic SSM

Theorem 1 Let Spect(E) = {λE1 , λ̄E1 , · · · , λEm, λ̄Em}
and define Spect(�) = {λ1, · · · , λ2n}. Under the non-
resonance condition

a · Re(λE ) + b · Re(λ̄E ) �= Re(λk),
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∀ λk ∈ Spect(�) \ Spect(E),

∀ a, b ∈ N
m
0 , 2 ≤ |a + b| ≤ �(E), (55)

where the absolute spectral quotient �(E) of E is
defined as

�(E) = Int

(
minλ∈Spect(�) Reλ

maxλ∈Spect(E) Reλ

)
. (56)

Assume further that r > �(E). Then for any ε > 0
small enough, the following hold for system (5):

(i) There exists a 2m-dimensional, time-periodic,
class Cr SSM W(E,�t) that depends smoothly
on the parameter ε.

(ii) The SSMW(E,�t) is unique amongallC�(E)+1

invariant manifolds satisfy (i).
(iii) W(E,�t) can be viewed as an embedding of an

open set in the reduced coordinates ( p, φ) into
the phase space of system (5) via the map

W ε( p, φ) : C2m × S1 → R
2n . (57)

(iv) There exists a polynomial series Rε( p, φ) :
C
2m × S1 → C

2m satisfying the invariance
equation

B
(
D pW ε( p, φ)Rε( p, φ) + DφW ε( p, φ)�

)

= AW ε( p, φ) + F(W ε( p, φ)) + εFext(φ),

(58)

such that the reduced dynamics on the SSM
W(E,�t) can be expressed as

ṗ = Rε( p, φ), φ̇ = �. (59)

Proof This theorem is simply a restatement of Theo-
rem 4 by Haller and Ponsioen [18], which is based on
more abstract results by Cabré et al. [38–40] and Haro
and de la Llave [41,42]. ��

B Derivation of explicit responses amplitude

In the case of polar coordinates, we substitute (14) and
obtain

qc =(ρ1e
i(θ1+r1�t))c1 · · · (ρmei(θm+rm�t))cm

=ρceic·θeic·r�t , (60)

q̄d =(ρ1e
−i(θ1+r1�t))d1 · · · (ρme−i(θm+rm�t))dm

=ρde−id·θe−id·r�t , (61)

and then qcq̄d = ρc+dei(c−d)·θei(c−d)·r�t . Thus we
have

W( p) =
∑

(c,d)

w(c,d)q
cq̄d

=
∑

(c,d)

w(c,d)ρ
c+dei(c−d)·θei(c−d)·r�t

=
∑

r̂i

w
p
r̂i
eir̂i�t (62)

where

w
p
r̂i

=
∑

(c,d)∈Ti

w(c,d)ρ
c+dei(c−d)·θ (63)

with Ti = {(c, d) : r̂i = (c− d) · r}.
In the case of Cartesian coordinates, we substi-

tute (16) and obtain

qc = (q1,se
ir1�t )c1 · · · (qm,se

irm�t )cm = qcse
ic·r�t ,

(64)

q̄d = (q̄1,se
−ir1�t )d1 · · · (q̄m,se

−irm�t )dm

= q̄ds e
−id·r�t , (65)

and then qcq̄d = qcs q̄
d
s e

i(c−d)·r�t . Thus we have

W( p) =
∑

(c,d)

w(c,d)q
cq̄d

=
∑

(c,d)

w(c,d)q
c
s q̄

d
s e

i(c−d)·r�t

=
∑

r̂i∈R̂
wc
r̂i
eir̂i�t (66)

where

wc
ri =

∑

(c,d)∈Ti

w(c,d)q
c
s q̄

d
s . (67)

WithTVSSMsolutionused, the periodic response (20)
is simplified as

z(t) =
∑

r̂i∈R̂
ŵr̂i e

ir̂i�t (68)

where ŵr̂i is given by (25). Thus

Aopt =
∑

r̂i

ŵr̂i ,opte
ir̂i�t (69)

Note that

∫ T

0
z∗I(t)QzI(t)dt
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=
∫ T

0

⎛

⎝
∑

r̂i

ŵ
∗
r̂i ,Ie

−ir̂i�t

⎞

⎠ Q

⎛

⎝
∑

r̂ j

ŵr̂ j ,Ie
ir̂ j�t

⎞

⎠ dt

=
∑

r̂i

∑

r̂ j

ŵ
∗
r̂i ,I Qŵr̂ j ,I

∫ T

0
ei(r̂ j−r̂i )�tdt

= T
∑

r̂i

ŵ
∗
r̂i ,I Qŵr̂i ,I (70)

and hence

AL2 =
√∑

r̂i

ŵ
∗
r̂i ,I Qŵr̂i ,I . (71)

C Derivation of explicit gradients

C.1 Gradients of AL2

The derivative of AL2 is given by

DAL2 = 1

2AL2

∑

r̂i∈R̂

(
Dŵ

∗
r̂i ,I Qŵr̂i ,I + ŵ

∗
r̂i ,I QDŵr̂i ,I

)

= 1

AL2

∑

r̂i∈R̂
ŵ

∗
r̂i ,I Q̄Dŵr̂i ,I (72)

where Q̄ = (Q + Q�)/2 and (see (25))

Dŵr̂i =Dwcor
r̂i

+ (δεx0 + εδx0) χ1(r̂i )

+ (δε x̄0 + εδ x̄0) χ−1(r̂i ) (73)

Here χ1(r̂i ) = 1 if r̂i = 1 and χ1(r̂i ) = 0 otherwise.
Likewise, χ−1(r̂i ) = 1 if r̂i = −1 and χ−1(r̂i ) = 0
otherwise. Based on (21), we have

− iδ�Bx0 + (A − i�B)δx0 = 0. (74)

From which we obtain

δx0 = i(A − i�B)−1Bx0δ�. (75)

For polar coordinate representation, we have (63) and
thus

Dw
p
r̂i

=
∑

(c,d)∈Ti

w(c,d)·
(
Dρc+d + iρc+d(c− d) · δθ

)
ei(c−d)·θ

(76)

where

Dρc+d = ρc+d
m∑

j=1

c j + d j

ρ j
δρ j . (77)

For Cartesian coordinates, we have (67) and thus

Dwc
ri =

∑

(c,d)∈Ti

w(c,d)(Dqcs q̄
d
s + qcsDq̄ds ), (78)

where

Dqcs = qcs

m∑

j=1

c j
q j,s

δ(qRj,s + iqIj,s), (79)

Dq̄ds = q̄ds

m∑

j=1

d j

q̄ j,s
δ(qRj,s − iqIj,s). (80)

Substitution (73), (75)-(80) into (72) yields the gradient
below

∂AL2

∂ρ j
= 1

AL2

∑

r̂i∈R̂
ŵ

∗
r̂i ,I Q̄·

∑

(c,d)∈Ti

wI
(c,d)ρ

c+dei(c−d)·θ c j + d j

ρ j
,

(81)

∂AL2

∂θ j
= i

AL2

∑

r̂i∈R̂
ŵ

∗
r̂i ,I Q̄·

∑

(c,d)∈Ti

wI
(c,d)ρ

c+dei(c−d)·θ (c j − d j ), (82)

∂AL2

∂qRj,s
= 1

AL2

∑

r̂i∈R̂
ŵ

∗
r̂i ,I Q̄·

∑

(c,d)∈Ti

wI
(c,d)q

c
s q̄

d
s

(
c j
q j,s

+ d j

q̄ j,s

)
,

(83)

∂AL2

∂qIj,s
= i

AL2

∑

r̂i∈R̂
ŵ

∗
r̂i ,I Q̄·

∑

(c,d)∈Ti

wI
(c,d)q

c
s q̄

d
s

(
c j
q j,s

− d j

q̄ j,s

)
, (84)

for j = 1, · · · ,m and

∂AL2

∂�
= ε

AL2

(
ŵ

∗
1,I Q̄i

(
(A − i�B)−1Bx0

)
I + cc

)
, (85)
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∂AL2

∂ε
= 1

AL2

(
ŵ

∗
1,I Q̄x0,I + ŵ

∗
−1,I Q̄ x̄0,I

)
, (86)

where wI
(c,d)

∈ C
|I| extracts the corresponding entries

from the vector w(c,d), and cc denotes the correspond-
ing complex conjugate part.

C.2 Gradients of Aopt

The derivative of Aopt is given by

DAopt =
∑

r̂i∈R̂
(Dŵr̂i ,opt + ir̂i�ŵr̂i ,optDt+

ir̂i tŵr̂i ,optD�)eir̂i�t . (87)

Substitution (73), (75)-(80) into (87) yields the gradient
below

∂Aopt

∂ρ j
=

∑

r̂i∈R̂
eir̂i�t

∑

(c,d)∈Ti

w
opt
(c,d)

ρc+dei(c−d)·θ c j + d j

ρ j
,

(88)
∂Aopt

∂θ j
= i

∑

r̂i∈R̂
eir̂i�t

∑

(c,d)∈Ti

w
opt
(c,d)

ρc+dei(c−d)·θ (c j − d j ),

(89)
∂Aopt

∂qRj,s
=

∑

r̂i∈R̂
eir̂i�t

∑

(c,d)∈Ti

w
opt
(c,d)

qcs q̄
d
s

(
c j
q j,s

+ d j

q̄ j,s

)
,

(90)
∂Aopt

∂qIj,s
=

∑

r̂i∈R̂
eir̂i�t

∑

(c,d)∈Ti

w
opt
(c,d)

qcs q̄
d
s

(
c j
q j,s

− d j

q̄ j,s

)

(91)

for j = 1, · · · ,m and

∂Aopt

∂�
=

∑

r̂i∈R̂
eir̂i�t ir̂i tŵr̂i ,opt+

ε

(
i
(
(A − i�B)−1Bx0

)

opt
ei�t + cc

)
,

(92)

∂Aopt

∂ε
= x0,optei�t + x̄0,opte−i�t , (93)

∂Aopt

∂t
=

∑

r̂i∈R̂
eir̂i�t ir̂i�ŵr̂i ,opt, (94)

where w
opt
(c,d)

∈ C extracts the corresponding entry
from the vector w(c,d).

The derivatives of AL2 and Aopt with respect to �

involves inversion of the matrix A− i�B ∈ C
N×N , as

seen in (85) and (92). This inversionmust be performed
in each iteration, as the matrix is �-dependent. Hence,
the associated computational cost can be very signifi-
cant if n � 1. We note that this inversion is a result of
the non-autonomous part of the SSM, as seen in (20)
and (21), and this matrix inversion is not required if
we adopt the TI SSM solution (22). Thus, it is worth
checking if the difference between the TV SSM solu-
tions and the corresponding TI SSM solutions can be
ignored.
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