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Abstract Spectral submanifolds (SSMs) have
emerged as accurate and predictive model reduction
tools for dynamical systems defined either by equa-
tions or data sets. While finite-elements (FE) models
belong to the equation-based class of problems, their
implementations in commercial solvers do not gener-
ally provide information on the nonlinearities required
for the analytical construction of SSMs. Here, we over-
come this limitation by developing a data-driven con-
struction of SSM-reducedmodels from a small number
of unforced FE simulations. We then use these mod-
els to predict the forced response of the FE model
without performing any costly forced simulation. This
approach yields accurate forced response predictions
even in the presence of internal resonances or quasi-
periodic forcing, as we illustrate on several FE models.
Our examples range from simple structures, such as
beams and shells, to more complex geometries, such as
a micro-resonator model containing more than a mil-
lion degrees of freedom. In the latter case, our algorithm
predicts accurate forced response curves in a small frac-
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tion of the time it takes to verify just a few points on
those curves by simulating the full forced-response.

Keywords Model reduction · Spectral submanifolds ·
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1 Introduction

Finite element (FE) models are an invaluable tool for
scientific and engineering purposes. In most industrial
applications, however, FE simulations carry prohibitive
computational costs. Even using dedicated commer-
cial software, one facesmajor computational hurdles in
predicting time-dependent response of lightly damped,
nonlinear mechanical systems. To facilitate fast forced
response simulations of industrial-scale mechanical
structures, we will construct these nonlinear reduced-
order models based on the theory of Spectral Sub-
manifolds (SSMs) and using unforced simulation data
obtained from generic FE software.

Many model reduction techniques targeting nonlin-
ear mechanical systems have appeared in the literature.
Some methods, such as static condensation [1], modal
truncation [2,3] and modal derivatives [4–6], fall into
the category of intrusive (or direct) methods, because
they require explicit access to the governing equations
or the source code of an FE software to construct
reduced order models (ROMs). Nonintrusive tech-
niques [7], on the other hand, have greater accessibility
since they use the FE software as a black box to con-
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structROMs. Several data-driven techniques, including
Proper Orthogonal Decomposition [8,9] and its deep
learning-based applications [10,11] fall into this cat-
egory. In the FE context, such data-driven techniques
rely on expensive full-system simulations to generate
training data and have limited applicability outside the
training range. Other nonintrusive techniques, such as
the stiffness evaluation procedure (STEP) [12] and its
enhancements [13,14], avoid the use of expensive full
trajectory simulations to obtain ROMs.

A common feature of all the above techniques is
that they are projection based. Projection-based meth-
ods exhibit an inherently linear perspective on model
reduction that loses mathematical justification for non-
linear systems [15]. An emerging alternative in non-
linear model reduction is the use of attracting invari-
ant manifolds. The reduced dynamics on these low-
dimensional manifolds attracts the full system’s trajec-
tories and hence provides a mathematically rigorous
ROM. Prominent examples of this approach are spec-
tral submanifolds (SSMs) [16],which are the smoothest
nonlinear continuations of linear modal subspaces.
The existence and uniqueness of SSMs are guaran-
teed under appropriate nonresonance conditions on the
spectrum of the linearized system [16]. Indeed, these
conditions can be verified via any FE package, as we
will demonstrate.

Intrusive computation of SSMs has been success-
fully employed to reduce various FE models of nonlin-
ear mechanical systems [17–20], including those fea-
turing internal resonances [21–23] and parametric res-
onances [24]. An open-source implementation of these
direct/intrusive methods is available in the MATLAB-
based package, SSMTool [25]. More recently, the
data-driven computation of SSMs has been devel-
oped [26] and disseminated in the open-source pack-
ages, SSMLearn [27] and fastSSM [28]. These
developments have led to the notion of dynamics-based
machine learning for nonlinearizable phenomena [29]
in diverse application fields, including fluid dynam-
ics [30,31] and controls [32,33].

Our contributions

Motivated by the data-driven efforts of SSM computa-
tion, we aim to develop here an SSM-based nonintru-
sive technique for nonlinear model reduction of finite
element models. To this end, we will use the eigenval-

ues and eigenvectors of the linearized system that are
provided by any generic FE solver. This linear infor-
mation will be used to determine the dimension of the
SSM relevant for model reduction as well as the lin-
ear part of the expansions for the SSM and its reduced
dynamics. We will then perform transient simulations
of the unforced mechanical structure using generic FE
solvers. We will use this unforced trajectory data to
obtain the nonlinear part of the SSM parametrization
via the opensource package SSMLearn, which gener-
ically enables a data-driven construction of SSMs.
While our SSM-based ROM will be constructed based
on unforced system simulations, we will show how it
yields nonlinear forced response predictions for the full
system.

As our SSM-based ROM will provide forced
response predictions over a range of forcing frequen-
cies, this justifies the cost of full, unforced system sim-
ulations, which would otherwise be seen as a poten-
tially expensive offline cost. Furthermore, wewill show
that our methodology is also effective in the reduced-
order modeling of internally resonant systems. To this
end, we will make use of the results of Li et al. [21]
and their implementations in the opensource pack-
age, SSMTool, where the periodic orbit computation
is transformed into a fixed-point problem via the polar
normal form of the reduced dynamics. Finally, we will
implement the proposed methodology and examples
within SSMLearn.

The remainder of this paper is organized as fol-
lows. In the next section, we define the general setup
for mechanical systems and SSM-based model reduc-
tion. In Sect. 3, we discuss how to learn SSMs and
their reduced dynamics based on linearized system
information and decaying (unforced) trajectory data.
We also show how the effect of external forcing can
be systematically included in SSM-based ROMs to
make forced response predictions. Finally, in Sect. 4,
we demonstrate ourmethodology on FEmodels of one-
dimensional beam structures, two-dimensional shell
structures, and a three-dimensional continuum-based
MEMS resonator. These examples vary in their num-
bers of degrees of freedom from a few hundred to
more than a million. With these examples, we aim
to demonstrate the data-assisted, SSM-based predic-
tion of several nonlinearizable phenomena, which
include multiple coexisting steady states and non-
linear modal interactions in internally resonant sys-
tems.
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2 Setup

FE models for mechanics problems comprise a sys-
tem of second-order ordinary differential equations for
generalized displacements q(t) ∈ R

n in the form

Mq̈ +Cq̇ +Kq + f int(q, q̇) = εfext(q, q̇,�t; ε), (1)

where, M,C,K ∈ R
n×n are the mass, damping and

stiffness matrices; f int(q, q̇) ∈ R
n is the purely non-

linear internal force; and fext(q, q̇,�t; ε) ∈ R
n is the

external force with frequency vector � ∈ R
l , whose

amplitude is governed by the small parameter ε > 0.
We assume that internal and external forces are smooth,
and that the latter can be written in terms of its Taylor-
Fourier expansion as

fext(q, q̇,�t; ε) =
∑

k∈Zl

fextk ei〈k,�〉t + O(ε‖(q, q̇)‖),

fextk ∈ C
n, fext−k = f̄extk , (2)

where 〈k,�〉 denotes the k-harmonic of the forcing
frequency �, defined as the inner-product of k and �,
i.e., 〈k,�〉 := �1k1+· · ·+�l kl . The force fext may be
autonomous (when l = 0), periodic or quasi-periodic
in t , depending on whether the frequencies in � are
rationally commensurate or not. In Eq. (2), we denote
the complex conjugate of a vector z ∈ C

n as z̄ ∈ C
n .

We write system (1) in a first-order form with the
state vector x = (q, q̇) ∈ R

2n as

ẋ = f(x,�t; ε),

f(x,�t; ε) = Ax + f0(x) + εf1(x,�t; ε),

A =
[

0 I
−M−1K −M−1C

]
,

f0(x) =
(

0
−M−1f int(x)

)
,

f1(x,�t; ε) =
(

0
M−1fext(x,�t; ε)

)
, (3)

and we denote its trajectories starting from the initial
condition x0 as x(t; x0, ε).

We also assume that the origin is an equilibrium
for system (3) when ε = 0, and that the matrix
A is a semi-simple matrix featuring 2n eigenvalues
with negative real parts. As we focus on oscillatory
motions, we further assume that A has c ≤ n complex
conjugate pairs of eigenvalues λ1, λ̄1, λ2, λ̄2, ..., λc, λ̄c
ordered with non-increasing real parts, and we denote
by E1, E2, ..., Ec the corresponding two-dimensional

eigenspaces (or modal subspaces). We define a 2m-
dimensional (oscillatory) spectral subspace E2m as the
direct sum of m of these modal subspaces, i.e., E2m =
E j1 ⊕E j2 ⊕ ...,⊕E jm , and we denote spec

(
A|E2m

)
the

set of eigenvalues related to this spectral subspace, i.e.,
spec

(
A|E2m

) = {
λ j1, λ̄ j1 , λ j2 , λ̄ j2 , ..., λ jm , λ̄ jm

}
.

We recall that spectral subspaces are invariant for the
linearization of system (3) and that slow spectral sub-
spaces, i.e., related to the eigenvalues with the largest
real parts, are also attracting. If 2m slowest eigenvalues
arem complex conjugate pairs, then the 2m slow spec-
tral subspace is E2m

S = E1 ⊕ E2 ⊕ ...,⊕Em . A generic
spectral subspace E2m is spanned by the columns of
the matrix of eigenvectors VE2m ∈ C

2n×2m , satisfying
the eigenvalue problem AVE2m = VE2mRE2m where
RE2m ∈ C

2m×2m is the diagonal matrix whose ele-
ments are those of spec

(
A|E2m

)
. We will also need

the matrix WE2m ∈ C
2m×2n the matrix satisfying the

dual problemWE2mA = RE2mWE2m , and normalized
such that WE2mVE2m = I. We finally introduce U0 =
[u j1 u j2 ... u jm ] ∈ R

n×m as the matrix whose columns
are the mode shapes u j , normalized by the mass, i.e.,
U�
0 MU0 = I. We have hence KU0 = MU0ω

2
0, where

ω2
0 is the diagonal matrix of the m linear conservative

natural frequencies ω0, j1, ω0, j2 , ...ω0, jm .

2.1 Spectral submanifolds and their properties

If the spectral subspace E2m is non-resonant (i.e., no
nonnegative, low-order, integer linear combination of
the spectrum of A|E2m is contained in the spectrum of
A outside E2m), then E2m has infinitely many nonlin-
ear continuations in system (3) for ε small enough [16].
These continuations are invariant manifolds of dimen-
sion 2m + l. They are also tangent to E2m for ε = 0
and have have the same quasiperiodic time dependence
as fext. Out of all these invariant manifolds, we call
the smoothest one the (primary) spectral submanifold
(SSM) of E2m , denoted asWε(E2m). For more details
on the remaining, less smooth (or secondary) SSMs
tangent to E2m for ε = 0, see [31]. In this paper, we
will simply refer to the primary SSM as the “SSM” for
simplifying our discussion.

An SSM-based ROM involves the descriptions of
the SSM geometry in the phase space and its reduced
dynamics. For the geometry, a pair of smooth, invertible
maps are needed: the coordinate chart y = w(x,�t; ε),
which uniquely maps a state x ∈ Wε(E2m) into either
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2m real reduced coordinates or m complex conju-
gate pairs y ∈ C

2m ; and the parametrization x =
v(y,�t; ε), which retrieves the invariant manifold in
the phase space from the reduced coordinates. These
two maps satisfy the invertibility relations

y = w(v(y,�t; ε),�t; ε),

x = v(w(x,�t; ε),�t; ε). (4)

The reduced dynamics on Wε(E2m) is described
by the vector field ẏ = r(y,�t; ε). By the invari-
ance of the manifolds (i.e., if x0 ∈ Wε(E2m) then
x(t; x0, ε) ∈ Wε(E2m) ∀t), the mappings v,w, r, f
satisfy the invariance relations

Dyv(y,�t; ε)r(y,�t; ε) + D�tv(y,�t; ε)�

= f(v(y,�t; ε),�t; ε),

Dxw(x,�t; ε)f(x,�t; ε) + D�tw(x,�t; ε)�

= r(w(x,�t; ε),�t; ε). (5)

By the smooth dependence of the SSM on ε [16],
we can write the expansion

w(x,�t; ε) = W0x + wnl(x) + εw1(�t) + O(ε‖x‖),
W0 ∈ C

2m×2n,

v(y,�t; ε) = V0y + vnl(y) + εv1(�t) + O(ε‖y‖),
V0 ∈ C

2n×2m,

r(y,�t; ε) = R0y + rnl(y) + εr1(�t) + O(ε‖y‖),
R0 ∈ C

2m×2m, (6)

wherewnl(x), vnl(y), rnl(y) are purely nonlinear maps,
and w1(�t), v1(�t), r1(�t) are time-dependent vec-
tors. By the definition of SSMs, we must have

range (V0) = E2m, spec (R0) = spec
(
A|E2m

)
,

(7)

hence there exists an invertible matrix P ∈ C
2m×2m

such that

V0 = VE2mP−1, R0 = PRE2mP−1. (8)

ThismatrixP is the change of basismatrix so thatR0

is similar to its diagonalizationRE2m . When we substi-
tute the maps (6) into the second invariance relation of
Eq. (5), we indeed find that AV0 = V0R0. Finally,W0

defines the leading-order term of the coordinate chart
w(x,�t; ε) that can be determined from the knowledge
of V0, as we show in the next section.

W0(E2m)

E2m

R
2n

v

w

f

r vnl

Fig. 1 Illustration of parametrization of an autonomous invari-
ant manifoldW0(E2m) (in blue, with a trajectory on it) using the
tangent space at the origin, being the spectral subspace E2m (in
orange, with the projected trajectory on it)

3 Learning SSMs from data

We assume knowledge of the linear part of the full
system (1) in terms of the matrices M,C,K, and the
external forcing vectors fextk . This linear information is
provided by any generic FE software, which we also
use to generate a small number of trajectories of (1)
for ε = 0. From these simulations, we aim to learn the
nonlinear components of themaps in Eq. (6). The linear
part of these maps can be explicitly obtained from the
linearized system information, as we will show in this
section.

To parametrize an SSM discussed in Sect. 2.1, we
use a graph-style of parametrization, wherein the coor-
dinate chart is obtained as a projection onto the spec-
tral subspace E2m without any time-dependent terms,
as shown in Fig. 1. By truncating the expansions (6) at
order O(ε‖y‖), we obtain our SSM-based ROM from
the expressions

w(x,�t; ε) = W0x,

v(y,�t; ε) = V0y + vnl(y) + εv1(�t),

r(y,�t; ε) = R0y + rnl(y) + εr1(�t), (9)

which is valid formoderate amplitudes of displacement
and and forcing [16,34].

As we will show, we can obtain explicit expressions
forW0,V0,R0, v1(�t) and r1(�t) usingM,C,K, and
fextk . The nonlinear cores of themodel vnl(y), rnl(y) can
be then obtained from unforced system simulations,
following [26,35].

Another approach to parametrize the reduced
dynamics employs an extended normal form, con-
structed from the data-driven approach in [26]. As
described in detail in the upcoming Sect. 3.2, the
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coefficients of this extended normal-form dynamics
are sparse by construction. Furthermore, this normal-
form allows the direct extraction of backbone curves,
damping curves, and forced response curves (FRCs)
[19,34,36]. Specifically, normal forms on SSMs enable
fast computation of FRCs, either via analytical solu-
tions (for the casem = 1) or by simplifying the periodic
orbit computation to a fixed-point problem [21,22],
which is particularly useful in the case of internal res-
onances.

To identify normal forms using data, we seek a near-
identity change of coordinates [26]

y = h(z,�t; ε) = P (z + hnl(z) − εh1(�t)) ,

z = h−1(y,�t; ε) = P−1y + h−1
nl (P−1y) + εh1(�t),

(10)

that transforms the SSM-reduced dynamics in the sim-
plest possible complex polynomial form,

ż = n(z,�t; ε)

= RE2m z + nnl(z) + εn1(�t), z ∈ C
2m, (11)

as we describe in the next sections.
Our construct remains applicable for general quasi-

periodic forcing, as long as the frequency spectrum of
external forcing has no resonance relationships with
the spectrum of A outside the spectral subspace E2m .

3.1 Setting up graph-style approaches

Before data-driven learning of SSM, we need to set up
the linear parts of theROM(9) to satisfy the invertibility
relations (4) and the invariance equations (5).

Substituting (9) in the first identity in Eq. (4), we
obtain the constrains that ∀ y, t

W0V0 = I, W0vnl(y) ≡ 0, W0v1(�t) ≡ 0.

(12)

As V0 and R0 are set according to Eq. (8), we need to
choose W0.

The simplest choice is to set W0 = PWE2m , so
that the coordinate chart is a modal projection, i.e.,
the rows of W0 are linear combinations of those of
WE2m as defined by the matrix P. Substituting Eq.
(9) into the first invariance equation (5), we obtain the
reduced dynamics as r(W0x,�t; ε) = W0f(x,�t; ε).

As expected from graph-style parameterization, this
reduced dynamics is simply the projection of the full
dynamics onto E2m via W0. In particular, we have
W0A = R0W0, which upon left-multiplying with V0,
yields

W0AV0 = R0. (13)

Among the possible forms of the linear parts, a sim-
ple choice is to use the first-order damped modes to
parametrize the SSM. Hence, P is the identity matrix
of dimension 2m in the case of complex-conjugate
reduced coordinates. For real reduced coordinates, P
has a block diagonal structure with m-identical blocks
of matrix P2 ∈ C

2×2, defined as

P2 =
[
1 −i
1 i

]
. (14)

For the common case of proportional damping C =
αM + βK, we simply adopt modal displacement and
modal velocities from the conservative mode shapes
U0, resulting in

W0 =
[
U�
0 M 0
0 U�

0 M

]
, V0 =

[
U0 0
0 U0

]
,

R0 =
[

0 I
−ω2

0 −(αI + βω2
0)

]
. (15)

In this case, our ROM is a mechanical system in the
coordinates y = (qm, q̇m), where qm = U�

0 Mq.
As an alternative, one can chooseW0 more generally

and not as a modal projection, i.e., in case its rows are
not linear combinations of those of WE2m . For exam-
ple, one could use the displacements and velocities of
specific degrees of freedom to describe the SSM. This
approach was adopted by the pioneering work of Shaw
and Pierre [37]. We will discuss this approach in one of
our examples and in Appendix A, which also contains
some cautionary notes on graph-style parametrizations
whose coordinate charts are not modal projections.

3.2 Autonomous SSM geometry and reduced
dynamics

Once the spectral subspace and the consequent lin-
ear parts of the SSM and its reduced dynamics are
determined, the nonlinear parts vnl(y) and rnl(y) can
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be computed from the simulation data via any regres-
sion technique. This is because the reduced coordinates
y = W0x are known a priori for our graph-style param-
eterization. For this purpose, we must use trajectory
data that have a strong footprint of the dynamics of the
SSM under investigation, up to a maximal amplitude
amax of interest. We denote by s(x) a function that pro-
vides the signed amplitude of interest for any state x of
the system.

Recognizing that an SSM is locally approximated
at leading order by its spectral subspace near the fixed
point, we propose two strategies for choosing initial
conditions for training simulation.

1. Initialization based on static response: We use an
external static loading to reach an amplitude of
interest such that the resulting static deflection is
similar to the underlying mode shape of the SSM.
Specifically, for an external forcing of the form
fext(t) = f0a(t), where f0 ∈ R

n is a given forc-
ing vector and a(t) is a time-varying amplitude, we
statically force the system along the given shape f0
to obtain a static response as the initial condition
for decaying simulation trajectory. We physically
expect the structure to undergo decaying nonlin-
ear oscillations along the mode shape closest to the
static response of the forcing shape. Hence, this
strategywill be effectivewhen the two-dimensional
slowSSMcorresponding to this closestmode shape
needs to be targeted. In our experience, this strategy
is useful when the forcing shape is known and the
corresponding static response is aligned with a low
frequency mode. While providing relevant nonlin-
ear initial conditions, this approach requires fully
nonlinear static solutions that may be computa-
tionally intensive to obtain. For internally resonant
systems, this strategy is generally unable to pro-
duce meaningful initial conditions along the modes
involved in resonance.

2. Initialization based on mode shapes: As a faster
alternative, we define initial conditions using the
mode shapes as x0 = (q0, 0) with q0 = U0qm
satisfying |s(x0)| ≥ amax. By simply evaluating
the internal forces under such a displacement, we
explore the nonlinear force field and choose an
appropriate amplitude of the mode shape for initial
conditions, as wewill showwith specific examples.
In contrast to the previous strategy, this approach is
agnostic to the forcing shape and initializes trajec-

tories along themodes shapes participating in inter-
nal resonance or along the mode shape associated
with an externally excited mode near its resonance
frequency. In our experience, this strategy useful
for learning higher-dimensional SSMs associated
with internally resonant systems. For single-mode
external resonance, however, this initializationmay
produce decaying transients along other modes as
well for sufficiently high initialization amplitudes.
In such cases, we do not expect as clean data for
learning two-dimensional SSMs as in the previous
approach.

Using both initialization strategies above, we expect
that the full system trajectories converge to reduced
dynamics on the nearby slow SSM after some initial
transients [16]. As we will show using examples, the
second strategy above is also relevant for identifying
intermediate SSMs, which are required for reducing
internally resonant systems.

For weakly-damped mechanical systems, the
reduced dynamics trajectories cover the SSMwith high
density. Therefore, only a few trajectories are suf-
ficient to learn the SSM geometry. Specifically, for
two-dimensional SSMs (m = 1), a single trajectory
initialized along the underlying mode shape is suffi-
cient in our experience. For higher-dimensional SSMs,
initial conditions along different modal directions are
required. Specifically, for four-dimensional SSMswith
U0 = [u j1 u j2 ], we use at least three initial con-
ditions for training, i.e., two along each of the two
modes and one along their interaction α1u j1 + α2u j2 ,
where α1, α2 ∈ (0, 1) are random numbers. Differ-
ent choices for α1, α2 would result in more training
and testing data, but the simulation time would be
prohibitive, especially for very high-dimensional mod-
els.

Once the training and testing data are collected
and appropriately truncated to eliminate initial tran-
sients, we use polynomial regression to identify the
autonomous parts of theSSMparametrization andSSM
reduced dynamics as

vnl� = argmin
vnl

P∑

j=1

∥∥x j − V0y j − vnl
(
y j

)∥∥2 ,

rnl� = argmin
rnl

P∑

j=1

∥∥ẏ j − R0y j − rnl
(
y j

)∥∥2 ,

(16)
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where the reduced variables y j are obtained directly
by projecting the training data x j onto the spectral sub-
space as y j = W0x j ; P is the number of training dat-
apoints; and the time derivative can be computed via
numerical differentiation. In Appendix B, we show that
the optimal solution (16) for the polynomial regres-
sion of the parametrization satisfies the second con-
straint in Eq. (10). We also remark that, if the reduced
dynamics has the form of a mechanical system, i.e.,
y = (qm, q̇m), then the first m values of the map rnl
must be zero being the reduced dynamics the equiv-
alent first order system, i.e., we only need to identify
nonlinear forces.

For the dynamics in normal form, our approach
assumes that the maps hnl, h

−1
nl and nnl are multivari-

ate polynomials whose coefficients are determined by
the eigenvalues of RE2m as in classic unfoldings of
bifurcations [38,39]. Here, the classic Poincaré [40]
normal form construct is relaxed to what we refer
to as extended normal form, in which near-resonant
terms are also retained in addition to the resonant
terms [18,19,26]. The numerical values of the nor-
mal form coefficients are identified from data by min-
imizing the (unforced) conjugacy error as (see [26] for
details)

(nnl�,h
−1
nl�) = arg min

nnl,h
−1
nl

P∑

j=1

∥∥∥Dh−1(y j , 0; 0)ẏ j

−n0
(
h−1(y j , 0; 0), 0; 0

)∥∥∥
2
. (17)

Once h−1
nl is known, we obtain hnl via polynomial

regression. Switching to polar coordinates (ρk, θk) via
the transformation zk = ρkeiθk for k = 1, 2, ...,m, the
general normal form on a 2m-dimensional SSM can be
inferred from (11) as

ρ̇k = −αk(ρ, θ)ρk,

θ̇k = ωk(ρ, θ),

k = 1, 2, ...,m, ρ = (ρ1, ρ2, ...ρm),

θ = (θ1, θ2, ...θm). (18)

Here, the zero-amplitude limits of the functions αk

and ωk converge to the linearized damping and fre-
quency of mode jk . Hence, these functions represent
the nonlinear continuations of linear damping and nat-
ural frequency. If the linearized frequencies are non-
resonant, thenαk andωk only depend on the amplitudes
ρ.

3.3 Including external forcing in the reduced-order
model

By substituting the expressions in (9) into the first
invariance equation of (5) and collecting the O(ε)-
terms, we obtain

V0r1(�t) + Dv1(�t)� = Av1(�t) + f1(0,�t; 0).
(19)

We express v1 and its derivative in their Fourier
expansions as

v1(�t) =
∑

k∈Zl

v1ke
i〈k,�〉t ,

Dv1(�t)� =
∑

k∈Zl

v1ki〈k,�〉ei〈k,�〉t , v1k ∈ C
2n,

(20)

and using Eq. (10), we obtain W0v1k = 0. Hence, if
we project Eq. (19) viaW0 we find that

r1(�t) = W0f1(0,�t; 0), (21)

where we used the identity W0A = R0W0. Equa-
tion (21) includes any resonant forcing along the mode
that may trigger a nontrivial forced response. On the
other hand, theO(ε)-terms of the SSMparametrization
include the effect of any nonresonant forcing. These
terms are obtained by substituting Eq. (21) into Eq. (19)
leading to

v1k = (A− i〈k,�〉I)−1(V0W0 − I)
(

0
M−1fextk

)
. (22)

Using modal coordinates and denoting w∗ as the
complex-conjugate transpose of the vectorw,weobtain
an alternative expression for Eq. (23) as

v1k =
2n∑

j=1,
λ j /∈spec

(
A|E2m

)

1

λ j − i〈k,�〉v jw∗
j (V0W0 − I)

(
0

M−1fextk

)
, (23)

which is useful for computational implementations. In
particular, for a mechanical system with proportional
damping, we use the conservative, mass-normalized
mode shapes to rewrite Eq. (23) with v1k = (v1k,q , v

1
k,q̇)

as
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v1k,q =
n∑

j=1,
ω0, j /∈ω0

u�
j f

ext
k

ω2
0, j − 〈k,�〉2 + i(α + βω2

0, j )〈k,�〉u j ,

v1k,q̇ = i〈k,�〉v1k,q . (24)

Indeed, Eq. (24) may be approximated by using a
finite number of non-resonant modes N  n.

When the reduced dynamics are transferred to their
normal form, further steps are necessary to include
the effect of external forcing. First, we remark that
the quasi-periodic vector h1(�t) appears on both h,
h−1 with opposite sign due to invertibility relation y =
h(h−1(y,�t; ε),�t; ε). Here, we focus on the peri-
odic forcing case, which appears commonly in struc-
tural dynamics applications (see [19,26] for details on
the treatment for generic quasi-periodic forcing). Thus,
we now assume that the external forcing is given as

fext(q, q̇,�t; ε) = fext0
ei�t + e−i�t

2
+ O(ε‖(q, q̇)‖).

(25)

We assume, without loss of generality, that the diag-
onal entries of RE2m are ordered as
{λ j1, λ j2 , ... λ jm , λ̄ j1, λ̄ j2 , ... λ̄ jm }. Hence, the last m
columns (resp. rows) of P (resp. P−1) are the complex
conjugates of the first m. We also denote �m as the
diagonal matrix whose entries are {λ j1, λ j2 , ... λ jm }.
Finally we introduce the following notation:

gr = P−1W0

(
0
fext0

)
=

(
g
ḡ

)
,

g = (g1, g2, ..., gm)�, gk ∈ C for k = 1, 2, ..., m.

(26)

For our reduced dynamics to capture any possible
resonant forcing, we focus on the case wherein � is
close to the natural frequency of K of the modes asso-
ciated with the SSM. Specifically, we define the index
set R := {k1, k2, ..., kK } with 1 ≤ K ≤ m satisfying
k ∈ R : ω0,k ≈ �. If the linearized frequencies of the
modes related to the SSM are well-separated, then R
contains only one element, but R may contain multiple
entries otherwise. For instance, the set R contains two
indices when there exists a 1 : 1 internal resonance.
Let IR ∈ R

m×m be a diagonal matrix such that

{
(IR)kk = 1, if k ∈ R

(IR)kk = 0, otherwise.
(27)

As we show in Appendix C, the forcing terms in the
normal form are given as

n1(�t) =
(
ei�It IRg
e−i�It IRg

)
,

h1(�t) =

⎛

⎜⎜⎜⎝

(�m − i�I)−1 ei�It (I − IR) g
+ (�m + i�I)−1 e−i�Itg(

�̄m + i�I
)−1

e−i�It (I − IR) ḡ

+ (
�̄m − i�I

)−1
ei�It ḡ

⎞

⎟⎟⎟⎠ . (28)

Expressing gk = i fkeiφk , where fk = |gk | denotes
the modal forcing amplitude of the jk-th mode, and
φk = � gk − π/2 denotes its phase (with � being the
argument of the complex number gk), we obtain the
polar normal form including forcing terms as

ρ̇k = −αk(ρ, θ)ρk − fk sin (�t + φk − θk) ,

θ̇k = ωk(ρ, θ) + fk
ρk

cos (�t + φk − θk) ,
(29)

for every k ∈ R. For k /∈ R, the normal form does
not contain any forcing terms as in Eq. (18). As men-
tioned earlier, the polar normal forms are instrumental
in expressing the periodic orbit computation as a fixed-
point problem via appropriate phase shifts. For m = 1,
the forced response can also be retrieved analytically
as the zero-level set of a scalar function [19,26,34]. For
internally resonant systems (m > 1), forced response
can still be obtained as a fixed-point problem [21,22],
which greatly simplifies bifurcation analysis, as we
demonstrate through examples in the next section.

4 Examples

We implemented the proposed methodology in the
open-source package SSMLearn [27], which
facililates a data-driven construction of SSMs. Specifi-
cally, we provided explicit expressions for the leading-
order parametrizations of the SSM and its reduced
dynamics as basic inputs to SSMLearn. These inputs
involvedW0, V0, and R0 (see Eq. (9)) that are derived
based on the linearized system matrices M,C, and K,
as discussed in Sections 3.1. We then used unforced
trajectory data obtained from full-system simulations
to learn the nonlinear part of the parametrizations of
the SSM and its reduced dynamics via SSMLearn, as
discused in Sect. 3.2. Finally, we included the effect of
external forcing in our autonomous (unforced) SSM-
based ROM to directly compute the forced response
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curves, as discussed in Sect. 3.3. For making forced
response predictions of internally resonant systems,
we incorporated the open-source implementations of
Li et al. [21] from SSMTool [25] into our methodol-
ogy in SSMLearn. This incorporation greatly simpli-
fied the periodic orbit computation in internally reso-
nant systems by transforming it into a fixed-point prob-
lem [21].

We now apply the proposed data-assisted, non-
intrusive ROM technique to several examples available
in the SSMTool [25] repository. For these examples,
we compare our SSMLearn-based predictions with
the predictions of equation-driven, SSM-based ROMs
in SSMTool that have already been validated against
full-system simulations in prior publications [19,21].
We also apply the proposedmethodology to new exam-
ples outside the SSMTool reposity, where we per-
form full system simulations to validate our ROM pre-
dictions. Our implementations and results are openly
available in the SSMLearn [27] repository.

To present our results for forced periodic motions
of period T , we use the following definitions for the
amplitude and the phase of oscillations:

amp = max
t∈[0,T )

|s (v (y(t),�t))| ,

phase = �
∫ T

0
s (v (y(t),�t)) e−i2π t/T dt. (30)

Unless specifiedotherwise,wewill consider the case
T = 2π/�, and, therefore, the phase in Eq. (30) is
that of the primary harmonic. For the case of backbone
curves associated to two-dimensional SSMs, we use
the amplitude metric [17,35,41]

amp(ρ) = max
θ∈[0,2π)

|s (v (h(z, 0; 0), 0; 0))| ,

z =
(
ρeiθ , ρe−iθ

)
. (31)

Following [26,35], we use the normalized mean-
trajectory-error (NMTE) to quantify the errors of an
SSM-based ROM in autonomous trajectory predic-
tions. For P observations x j , j = 1, . . . , P along a
trajectory, and their model-based reconstructions, x̂ j ,
this modeling error in percentage is defined as

NMTE = 100

P‖x‖
P∑

j=1

∥∥x j − x̂ j
∥∥ , (32)

wherex is a relevant normalization vector. For example,
xmay be the data point with the largest norm. In exam-

ples featuring a single-mode, forced externally near its
resonance, we use the physical amplitude associated
with the oscillation along the primary mode for graph-
ical illustrations. For internally resonant examples, we
have chosen more than one probe points to demon-
strate participation of multiple modes in the nonlinear
steady state.We note that using higher-order polynomi-
als generally reduces the NMTE error to any required
level but excessively small errors can lead to overfitting.
In our examples, we will consider acceptable model
when featuring NMTE errors on test data in the order
of 1% − 10%, favoring lower order models to higher
ones.

4.1 Von Kármán beam

As a first example, we analyze a finite-element model
of a von Kármán beam [43] with clamped-clamped
boundary conditions, shown in Fig. 2(a), which is also
discussed in [26]. This beam model captures moderate
deformations by including a nonlinear, quadratic term
in the kinematics. Here, we discretize the beamwith 12
elements, using cubic shape functions for the transverse
deflection and linear shape functions for the axial dis-
placement. The resulting model contains 33 degrees of
freedom (DOFs), and it describes an aluminium beam
of length 1 [m], width 5 [cm], thickness 2 [cm] and the
material damping modulus 106 [Pa-sec]. The slowest
eigenvalue is approximately −3.09 + i657.72.

The spectral gap (ratio between the real parts)
between the first and second slowest modes is 7.6,
which means that the decay along the second or higher
modes is more than seven times faster than that along
the first mode. Hence, we aim to construct a ROMs for
this beam using the slowest, two-dimensional SSM,
which is the nonlinear continuation of the first vibra-
tion mode.

To capture data close to the SSM, we used the ini-
tialization strategy based on static loading outlined in
Sect. 3.2. Specifically, we force the beam from mid-
point loading f and we measure the transverse dis-
placement of this midpoint qB , as shown in Fig. 2a. In
Fig. 2b, we compare the linear and nonlinear internal
force at themidpoint vs the static deflection as the force
magnitude increases. This choice of forcing results in
a static displacement similar to the first mode shape.
Hence, we expect that an unforced trajectory initialized
with such a displacementwould quickly converge to the
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Fig. 2 Plot (a) shows the finite element discretization of the
beam, including the equilibrium position and the static deflection
when subject to midpoint loading. The force displacement rela-
tionof such static loading is instead shown inplot (b), distinguish-
ing the linear (black dashed line) and nonlinear case (blue line),
and plotting the midpoint displacement. Plot (c) shows the test
trajectory from the numerical simulation of the full model (blue
curve) and its prediction (red line) from the SSMLearn reduced-
order model. This reduced-order model predicts the backbone

curves shown in plot (d,e), in terms of damping and frequency,
where the frequency is compared to that extracted by process-
ing the training trajectory with the method of Peak Finding and
Fitting, [42]. Plot (f) shows the SSM in the physical space along
with the training trajectory, where q and qa are the transverse and
longitudinal displacements shown in plot (a), respectively. Plots
(g,h) show forced responses in terms of amplitude and phase of
q computed via SSMTool (green) and SSMLearn (dark red)
for two forcing amplitude values

SSM.We choose the initial amplitudes for training and
testing trajectories near a displacement qB of around
2 [mm]. Then, we train a seventh-order model using
SSMLearn, whose reduced dynamics are obtained as

ρ̇ = α(ρ)

= −3.09ρ − 1.6198ρ3 + 2.696ρ5 + 0.83303ρ7

θ̇ = ω(ρ)

= +657.7165 + 469.4784ρ2 − 308.8319ρ4

−103.9608ρ6. (33)

This ROM returns an NMTE of 3.53 % for the test
trajectory, with the prediction shown in Fig. 2(c). The
ROM also produces the backbone curves for damping
and frequency in Figs. 2(d,e). The x-axis of these back-
bone curves denotes the variation of damping and fre-
quency with respect to the zero-amplitude limit, i.e.,
their linearized values. The instantaneous frequency
backbone of Fig. 2(e) has a good agreement with those
extracted directly from the training trajectory using the
signal processing method known as Peak Finding and
Fitting [42]. The ROM also describes the SSM geome-
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Fig. 3 Plot (a) shows the forced response curve,whose green line
depict the frequency to which plot (b) refers, where a section of
the three dimensional forced SSM is shown, along with the peri-
odic orbits (red and blue dots), the stable (blue line) and unstable
(red line) manifolds of the saddle (red point), and two trajectories
(grey lines) coverging to the two attractors. Plots (c,d) show two
periodically forced trajectories and their predictions converging

to the same attractor from different initial conditions, as shown
in plot (a). Plots (e,g,i) show three quasi-periodically forced tra-
jectories with initial condition being the origin, whose forcing is
shown in plots (f,h,j), respectively. For higher forcing amplitude
given in plot (l), the response amplitude goes outside the training
range and we obtain ROM predictions with poor accuracy, as
shown in plot (k)
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try, as shown in Fig. 2(f), along with the training trajec-
tory. The plot in Fig. 2(f) is in the coordinates qB , q̇B
and qA, where the axial displacement qA of the mid-
point is plotted against its bending displacement and
velocity qB , q̇B . Hence, the geometry of the SSM cap-
tures the nonlinear bending-stretching coupling of the
beam.

For modeling the SSM, we can also use the non-
modal graph-style parametrization discussed in
Appendix A and choose W0 to be the projection to
the midpoint displacement qB and its velocity q̇B . In
this case, we obtain a similarNMTEusing a cubic order
model, whose reduced dynamics take the form

q̈B = −432600qB − 6.18q̇B + 2548.1q2B
+15.476qBq̇B − 0.012043q̇2B
−743340000q3B − 21020q2Bq̇B − 339.02qBq̇

2
B

+0.0047173q̇3B . (34)

Note that, however, the characterization of this
reduced dynamics is not as immediate as that of the nor-
mal form from a dynamical system perspective. More-
over, as discussed in Appendix A, forcing is not as
simple to add to the reduced as for the modal graph-
style.

Now, we study the forced response of the system
using our SSM-based ROM in normal form. We intro-
duceperiodic forcing to thisROMbysimply turning the
midpoint static forcing into time-periodic. As shown
in Fig. 2(g,h), the FRC predictions of the SSMLearn
model are in close agreement with the equation-driven
model obtained via SSMTool.

Next, we turn our attention to additional forced
response. Namely, instead of looking at periodic solu-
tions arising from periodic forcing, we show that the
reduced-order model we constructed is capable of pre-
dicting general forced trajectories, as show in Fig. 3.
First, by still using periodic forcing, we simulate two
trajectories that converge to the periodic attractor of
the forced response curve at � = 105 [Hz]. The first
trajectory, shown in Fig. 3(c), has initial condition at
the unforced beam equilibrium and converges to the
attractor as shown in Fig. 3(a). The second trajectory,
shown in Fig. 3(d), still converges to the same attractor
but from a higher amplitude initial condition obtained
as a point of the high amplitude attractor at � = 110
[Hz], as indicated in Fig. 3(a). From these numeri-
cal experiments, we note that the SSMLearn predic-
tions agree with the full system simulations. Instead,

Fig. 3(b) shows a section within the modal coordinate
space of the three-dimensional SSM at � = 108 [Hz],
which deviates from the two-dimensional autonomous
one when periodic forcing is added to the system. In
thismanifold, the three periodic solutions (appearing as
points) are displayed, along with the stable and unsta-
ble manifolds of the saddle-type periodic orbit of the
frequency response.

The remaining plots in Fig . 3 focus on quasi-
periodic forcing, where simulations with forcing in
(f,h,j,l) are compared to predictions in (e,g,i,k). All the
trajectories have the origin as the initial condition, and
the forcing phases are generated randomly. The trajec-
tory in 3(e,k) features forcing with two frequencies,
i.e., � = (50, 150) [Hz]; the trajectory in Fig. 3(g) has
20 forcing frequencies equally spaced between 50 Hz
and 200 Hz; and that in Fig. 3(i) is subject to 200 forc-
ing frequencies equally spaced between 50 Hz and 250
Hz.Overall, the predictions of theROMs inFig. 3(e,g,i)
match closely with the full system simulations and the
trajectory error for these simulations is approximately
3

4.2 Prismatic beam in 1:3 internal resonance

As our next example, we consider the forced hinged-
clamped beam discussed in [21], originally presented
by [44]. After non-dimensionalization, modal expan-
sion and Galerkin projection, the governing PDE
becomes a system of ODEs of the form

ü j + ω2
j u j = δ

⎛

⎝−2cu̇ j + 1

2l

n∑

k,l,m=1

α j,k,l,mukulum

⎞

⎠

+ε f j cos(�t) (35)

for j = 1, 2, ..., n, where u j and ω j are the modal
coordinates and their respective eigenfrequencies; δ is
the dimensionless slenderness ratio; c is the dimen-
sionless damping coefficient; l is the ratio between the
beam length and its characteristic length; α j,k,l,m are
the coefficients of cubic nonlinearities; and f j are the
forcing coefficients. For additional details, we refer to
reader to [21,44]. For l = 2, the first twomodes exhibit
a frequency ratio ω2 ≈ 3ω1, where ω1 ≈ 3.8553 and
ω2 ≈ 12.4927. Hence, these modes are nearly in 1 : 3
internal resonance. To study this system, we perform a
reduction to its slow, four-dimensional SSM based on
the internally resonant modes. Following [21], we con-
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Fig. 4 Plot (a) shows the evaluation of the internal force field
nonlinearities under varying imposed modal displacement field,
for the first (left) and second mode (right). Plot (c) shows the
decaying trajectories in the twomodal coordinates obtained from
the full-ordermodel (in blue) and their prediction (dark red) from

the data-driven reduced-order model and plot (b) shows the spec-
trogram trajectory in blue on the top left plot of (c). Plots (d,e)
show the amplitudes of the first two modal coordinates of forced
responses computed via SSMTool and SSMLearn for two forc-
ing amplitude values near the lowest eigenfrequency

sider n = 10, ε = δ = 10−4, c = 100, ε f1 = 2, 3.5
and f2 = f3 = ... = f10 = 0.

To obtain the initial conditions for generating the
training trajectories, we use the second strategy out-
lined in Sect. 3.2, i.e., we impose modal displacement
fields for the first two modes. In Fig. 4(a), we eval-
uate the nonlinear static force fields and plot the ratio
between the norm of the nonlinear static force field and
that of the full static force field (linear and nonlinear),
vs. the amplitude of the imposed modal displacement
field, for the first and second modal amplitudes. The
plots show a nonlinear trend over the depicted range of
modal displacements. Within this range, we use ini-
tial conditions for training trajectories from the set
DIC, training := {u1,0u1, u2,0u2, au1,0u1 + bu2,0u2},

where we choose u1,0 = u2,0 = 100, while a, b
are random numbers in the interval (0, 1). Figure4(b)
shows the spectrogramof the unforced decay of the first
modal coordinate for the trajectory with initial condi-
tion x(0) = [u1,0u1, 0], where we observe that the first
and the third harmonics dominate the response.

To generate data for testing, we simulate trajec-
tories with initial conditions in the set DIC, test =
0.95DIC, training. Cubic-order models both for the SSM
parametrization and for its reduced dynamics are suf-
ficiently accurate to predict test trajectories, as shown
in Fig. 4c. Indeed, we obtain an optimal NMTE of 9.74
% on the test set, which does not reduce upon increas-
ing the polynomial order further than 3. The reduced
dynamics in the normal form parametrization takes the
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form

ρ̇1 = −0.01ρ1 − 5.0739e − 05ρ3
1 + 0.00049014ρ1ρ2

2
+Re((0.031335 − 0.58438i)ρ2

1ρ2e
i(−3θ1+θ2)),

ρ̇2 = −0.01ρ2 − 0.0036841ρ2
1ρ2 + 1.5171e − 05ρ3

2
+Re((−0.0040419 − 0.51863i)ρ3

1e
i(+3θ1−θ2)),

θ̇1 = +3.8553 + 4.3244ρ2
1 + 1.1339ρ2

2
+Im((0.031335 − 0.58438i)ρ1ρ2ei(−3θ1+θ2)),

θ̇2 = +12.4927 + 3.6813ρ2
1 + 1.8562ρ2

2
+Im((−0.0040419−0.51863i)ρ3

1ρ
−1
2 ei(+3θ1−θ2)).

(36)

We also remark that SSMTool obtains a normal
form of the type in (36), but with potentially different
coefficients from those of SSMLearn, since the nor-
malizations and transformations present in the imple-
mentation influence their values.

In Fig. 4(d,e), we compare the FRCs predicted using
the forced version of our ROM (36)with those obtained
via SSMTool that have already been validated against
the full system in [21]. In summary, our SSM-based
ROM, trained using unforced data, makes accurate pre-
dictions of the forced response and its bifurcations with
respect to the forcing frequency in this internally reso-
nant system.

4.3 Von Kármán shells with and without 1:2 internal
resonance

We now consider the shallow-arc example discussed in
[19,21,45]. The model is a FE discretization of a geo-
metrically nonlinear shallow shell structure, shown in
Fig. 5(a), which is simply supported at the two opposite
edges aligned along the y-axis of Fig. 5(a).

Following prior works [19,21], we choose the mate-
rial density as 2700 [kg/m3], Young’s modulus as 70
[GPa], Poisson’s ratio as 0.33, the length L = 2 [m],
the width H = 1 [m] and the thickness 0.01 [m]. We
consider two different values for the curvature param-
eter w (see Fig. 5 (a)), that is, (i) w = 0.1 [m] [19]
and (ii) w = 0.041 [m]. These two values lead to
different resonance configurations: (i) without internal
resonance [19] and (ii) with 1 : 2 internal resonance
between the first two modes [21].

The model is discretized using flat, triangular shell
elements having six degrees of freedom at each node.
The discretized model, obtained via [46], has 400 ele-
ments and n = 1320 DOFs. In both cases, we choose

Rayleigh damping, where we tune the mass and stiff-
ness coefficients to achieve a damping ratio of 0.20 %
for the first two shell modes. To monitor our response
predictions, we consider two probe points A and B, as
shown in Fig. 5(a). Here, point A is near an antinode
position for mode 1 and near a node position for mode
2. The converse holds for pointB.At these probe points,
we record the transverse vibration amplitudes qA and
qB .

We first consider configuration (i), which has the
curvature parameterw = 0.1 [m]. Similarly to our first
example (see section 4.1), we reduce this nonresonant
system using the slowest two-dimensional SSM, which
is the smoothest nonlinear continuation of the vibration
mode shown in 5b. To generate training data, we again
follow the first initialization strategy, where we stati-
cally force the structure at probe A along the z-axis to
achieve a deflection of 0.012 [m]. Indeed, this deflec-
tion ismore than 40%stiffer compared to the linearized
static response.

For obtaining a test trajectory, we use a slightly
lower static load to achieve an initial condition with a
deflection of 0.01 [m], as shown in Fig. 6a. The spectro-
gram for this trajectory is shown in Fig. 6(c), where we
observe a strong component near the first natural fre-
quency. Based on the training trajectory, we compute
our SSM-based ROM using polynomials up to order 7.
The reduced dynamics in normal form reads

ρ̇ = −0.29491ρ − 1.2539ρ3 + 2.6176ρ5 + 1.0114ρ7,

θ̇ = +147.4549 − 35.1372ρ2 + 24.7303ρ4 + 8.5609ρ6.

(37)

We validate this unforced ROM against the test tra-
jectory (see Fig. 6(a)), where we obtain an optimal
NMTE of 6.13 %. Figure6(e,f) captures the nonlinear
geometry of this autonomous SSM in two coordinate
systems. Plot (e) shows the SSMand the training trajec-
tory attracted to the SSM in the modal coordinates u1,
u̇1 and u2, while plot (f) shows them in the polar normal
form coordinatesρ and θ vs. the physical amplitude qA.

Next, we add time-periodic forcing to the above
ROM by sinusoidally forcing point A with ampli-
tudes of 10 and 20 [N]. We predict the FRCs at
these amplitude levels using our SSM-based ROM
obtained via SSMLearn, where we expect a nonlinear
forced response of softening type [19]. In Fig. 6(b,d),
we observe that our data-assisted FRC predictions
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Fig. 5 Plot (a) shows the finite element discretization of the
shallow-arc reference position and the two probe points whose
transverse displacements are denoted qA and qB . Plots (b,c) show
the displacement field for the first two conservative mode shapes

of configuration (i) without internal resonance, while plots (d,e)
show these shapes for configuration (ii) with 1 : 2 internal reso-
nance. The plots also show the natural frequencies in Hz and the
damping ratios

agree with the equation-based FRC predictions of
SSMTool [19].

We now consider configuration (ii) with the curva-
ture parameter w = 0.041 [m], which results in an
approximate 1 : 2 internal resonance. In Fig. 5(d,e), we
present the mode shapes and the frequencies of the first
twomodes. To reduce this internally resonant structure,
we compute the four-dimensional SSM associated to
the resonant modes via SSMLearn. Similarly to our
second example (see section 4.2), we use themodal ini-
tialization strategy of Sect. 3.2 to generate training and
testing trajectories. Specifically, we generate three tra-
jectories for training and three for testing. Each of the
two sets of trajectories are obtained by simulating one
initial condition along the first mode, one along the sec-
ondmode, and one along a randomconvex combination
of the two mode shapes, as discussed in Sect. 4.2. We
plot the three training trajectories at the probe points
qA, qB in Figs. 7(a,b).

Using the training data, we compute a cubic-order,
SSM-based ROM. The polar vector field describing the
normal form of the reduced dynamics is too long to be
reported here, but can be found togetherwith this exam-
ple in the openly available repository of SSMLearn.
We compare the predictions of this unforced ROM on
the training set, as shown in Fig. 7 (a,b), where we
observepointwise discrepancies between theROMpre-
dictions and the data. Despite these discrepancies, we

obtain a relatively low NMTE of 7.19 % on the test
data set. As an additional validation step, we compute
the 1-step prediction error PE1 in the test trajectories
for our ROM and compare it to that of the linearized
ROM. Indeed, this comparison in Fig. 7(c) shows that
PE1 for our ROM is one order of magnitude lower than
that of the linearized ROM.

We remark that the prediction discrepancies
observed in Fig. 7 (a,b) may not necessarily indicate
poor training, since simulations of nonlinear systems
are sensitive to initial conditions and may diverge over
long time scales. Minimizing the error on individual
training trajectories in such cases can result in overfit-
ting. A more reliable indicator of good training for the
ROM is an accurate prediction of attracting/hyperbolic
invariant sets in the nonlinear system, such as sta-
ble/unstable periodic orbits, which we consider next.

We now make FRC predictions using our SSM-
based ROM for the same forcing as in configuration
(i) except with forcing amplitudes of 2 [N] and 7 [N].
In Fig. 7(d,e), we observe that the data-assisted pre-
dictions of SSMLearn model match closely those
obtainedusing the cubic-ordermodel of SSMTool [21].
In these plots, we also contrast our predictions against
the linearized response,which does not exhibit any phe-
nomenon arising from the resonance coupling.

Whilewe compare our results to those obtained from
the equation-driven ROMs via SSMTool, we note that
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Fig. 6 Plot (a) shows the test trajectory from the numerical sim-
ulation of the full model (blue curve) in terms of output dis-
placement qA of the Von Kármán shell in configuration (i) along
with its spectrogram in plot (c). Plot (a) also shows the predic-
tion (dark red curve) of the SSMLearn data-driven model. Plots
(b,d) respectively show the amplitude and phase for the output

displacement qA of the forced responses for two forcing ampli-
tude values, both for the equation-driven model of SSMTool
and for the data-driven model of SSMLearn. Plots (e,f) show
instead the parametrization of the two-dimensional SSM along
with the training trajectories using two coordinate systems: phys-
ical coordinates in (e), while normal form and physical in (f)

the validation of FRC computations in both these con-
figurations against full system simulations (e.g., via
shooting, collocation, and harmonic balance methods)
have already been performed in [19,21].

4.4 Von Kármán plate in 1:1 internal resonance

As an additional example of a two-dimensional struc-
ture, we discuss the nonlinear vibrations of a simply-
supported, square, von Kármán plate model, originally
proposed and validated in [21]. In this configuration,
classical linear plate vibrations give an exact 1 : 1
internal resonance between the second and third plate
modes (see Fig. 8(a-d), where the first four modes are
illustrated). Interestingly, the SSM related to these two

modes is not the slowest SSM, arising from the contin-
uation of the first bendingmode.With this example, we
aim to demonstrate the effectiveness of our approach
in identifying intermediate SSMs [16] as well.

By uniformly dividing the plate sides into ten subin-
tervals, 200 triangular elements are used to discretize
the plate, resulting in 606 DOFs. The FE model is
built using the open-source FE package [46]. Fol-
lowing [21], we choose the material density as 2700
[kg/m3], Young’s modulus as 70 [GPa], Poisson’s ratio
as 0.33, plate length and width as 1 [m], and its thick-
ness as 0.01 [m]. We also choose a Rayleigh damping
modelwithC = M+4e−6K, see [21] formore details.
With these system parameters, the mesh and the first
four mode shapes, frequencies and damping ratios are
illustrated in Fig. 8(a-d). To monitor our response pre-
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Fig. 7 Plot (a) and (b) shows the three training trajectories in
terms of the output displacements qA and qB for the Von Kármán
shell in configuration (ii), i.e., in 1:2 internal resonance. The blue
curves depict numerical simulations, while dark red ones model
predictions. The trajectories at the top plot in both plots are ini-
tialized at the first mode, those in the middle one on the second
mode,while the bottomplot are initializedwith a linear combina-

tion of modes. Plot (c) shows the 1-step prediction error in modal
coordinates normalized by the maximum amplitude value for the
linear model (black curve) and for the SSMLearn data-driven
model (dark red curve). Plots (d,e) show the amplitudes for qA
and qB of forced responses computed via SSMTool (green) and
SSMLearn (dark red) for two forcing amplitude values, also
including the linear one in black

dictions, we consider two probe points A and B, as
shown in Fig. 8(a-d). We note here that point A is near
a node position for mode 2 and near an antinode posi-
tion for mode 3. The converse holds for point B. At
these probe points, we record the transverse vibration
amplitudes qA and qB .

We aim tomodel the intermediate, four-dimensional
SSM related to the second and third bending modes of
the plate, which exhibit an approximate 1 : 1 resonance
in our FE model. To obtain training trajectories, we
again adopt the second initialization strategy described
in Sect. 3.2. Similarly to the internally resonant exam-
ples of Sects. 4.2 and 4.3, we use three training tra-
jectories, shown in Fig. 8(e), initialized at appropriate
amplitudes (i) along mode 2, (ii) along mode 3, and

(iii) along a random linear combination of modes 2
and 3. Inspecting the spectrograms of these trajectories
in Fig. 8(f), we can verify that the dominant frequency
presence is that of the second and third mode.

Once again, the test trajectories are initialized sim-
ilarly but at 2% lower amplitudes than the training
trajectories. Using a cubic-order parametrization for
the SSM and a quintic-order parametrization for its
reduced dynamics, we obtain a ROM via SSMLearn
with an optimal NMTE of approximately 5 % on the
test data. The polar vector field describing the normal
form of the reduced dynamics in terms of the polar
amplitudes ρ1, ρ2 and the phase difference θ1 − θ2, is
too long to be reported here, but can be found together
with this example in the openly available repository of
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Fig. 8 Plots (a-d) show the mode shape as well as the damp-
ing ratios and frequencies for the first four plate modes. Plot
(a) also indicates the grid position for two output probe nodes
A (diamond) and B (square). Plot (e) shows the three decay-
ing trajectories used for model training in physical coordinates,
using the transverse displacements qA, qB and the velocity of
the former, whereas plot (f) shows the trajectories spectrogram

of qA. Plot (g) illustrates the test trajectories in the two modal
coordinates obtained from the full-order model (in blue) and
their prediction (dark red) from the data-driven reduced-order
model. Plot (h,i) respectively show the amplitudes for qA and
qB of forced responses computed via SSMTool (green) and
SSMLearn (dark red) for two forcing amplitude values, also
including the linear forced responses in black

SSMLearn. In Fig. 8(g), we obtain good agreement of
our test trajectory predictions with the test data along
the second and third modal coordinates u2, u3.

For studying the forced response, we apply a time-
periodic (sinusoidal), concentrated load in the trans-
verse direction at point A, shown in Fig. 8(a-d). As
this point is near an antinode for mode 3 and a node for
mode 2, we expect the modal component of the applied
force along mode 3 to be larger than that along mode

2. Due to the 1 : 1 resonance, however, we still expect
non-trivial interactions between the two modes in the
forced response.

We make FRC predictions using our SSM-based
ROM at forcing amplitudes of 20 [N] and 40 [N].
In Fig. 8(h,i), we observe that the predictions of
our data-assisted ROM, which is not trained on any
forced data, are consistent with the equation-based
predictions obtained using the quintic-order model of
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SSMTool [21]. In these plots, we also contrast our pre-
dictions against the linearized response, which does not
exhibit any phenomenon arising from the resonance
coupling. Once again, we remark that the validation
of these FRC computations against full system sim-
ulations (e.g., via shooting, collocation and harmonic
balance methods) have already been performed in [21].

4.5 High-dimensional FE model of a MEMS device

As our final example, we study a large FE model rep-
resenting a MEMS gyroscope prototype [47], com-
posed of a frame and a proof mass, as shown in
Fig. 9a. The overall physical dimensions of the device
are 600x600x20 [μm] The frame is connected to the
ground via four flexible beams, allowing its displace-
ment in the y-direction. The proof mass is connected
to the frame using two flexible folded beams, which
allow the proof mass to move in the x-direction. The
first vibrationmodeof the structure (seeFig. 9b) depicts
a synchronous motion of the frame and the proof mass
in the y-direction. In the presence of an external angu-
lar rotation, the oscillation along the first mode results
in a relative velocity that will generate a Coriolis force
on the proof mass along the x-direction. This Cori-
olis force excites the second vibration mode, which
comprises the sole motion of the proof mass along
the x direction. The parallel plate capacitors within
the proof mass detect this motion along the x direc-
tion and convert it into an angular velocity measure-
ment. This prototypewas designed to exhibit a strongly
nonlinear forced response along the first mode so that
the drive frequency near the first mode can be tuned
to match the sense frequency along the second mode
(see [47] for details). This mode-matched operation
strategy enhances sensing by exploiting the amplifi-
cation provided by both modes. Hence, in the present
analysis, we are interested in the nonlinear response
of the first mode (drive mode). To this end, we aim to
construct a two-dimensional ROM based on the SSM
along the drive mode.

For FE simulations of the full system in this
example, we use the commercial software, COMSOL
Multiphysics® 6.0.OurFEmesh is composedof 28,084
hexahedral elements and 8,636 prismatic (wedge) ele-
ments, resulting in 1,029,456 degrees of freedom. Due
to the relatively low damping found in MEMS appli-
cations, convergence of full system simulations to

a steady-state is computationally challenging. In the
present example, we consider moderately low damp-
ing with a quality factor Q = 200 of the first mode. To
achieve this quality factor, we have employed propor-
tional damping C = αM + βK, with α = −829.88
and β = 6.6679 × 10−8.

To generate a decaying simulation trajectory, we ini-
tialize the system at rest with a displacement along the
first vibration mode such that the maximum deflection
attained is 3.4μm.We simulate the system for a times-
pan T = 100T0, where T0 is the time period of the first
undamped natural frequency.We perform time integra-
tion in COMSOLMultiphysics® 6.0 using the general-
ized alpha solver with the strict time-stepping method,
where we choose the time step dt = T0/100, and a
relative tolerance of 10−5. With these settings, the sim-
ulation required 10,000 time steps and took about 110h.
Figure 9 c shows the displacement qA of the training
trajectory along the y -axis at a specific location on the
outer frame (see Figs. 9a,b).

In addition to large simulation times, memory
requirements pose constraints to storing the trajec-
tory data due to the high-dimensionality of the model.
Indeed, each time snapshot of a full solution vector
requires approximately 8.2 MB of storage. This would
result in an exorbitant memory requirement of approx-
imately 82,000MB to save all snapshots for the 10,000
time steps of the simulation trajectory. However, this
is not an issue for our approach, because full solu-
tion snapshots are required only for learning the SSM
parametrization, where a high sampling frequency is
not useful. Instead of the sampling rate of 100 snap-
shots per period used for time integration, we choose
to store full solution snapshots for only 5 samples
per period. This strategy reduces the memory require-
ments by a factor of 20 and results in similar accuracy
in estimating the SSM parametrization. On the other
hand, high-resolution snapshots are necessary to have
a good estimation of the time derivative of the reduced
states, which is used for learning the reduced dynam-
ics. Storing high-resolution snapshots for the reduced
states, however, does not pose any memory constraints
because of their low dimensionality. Therefore, we use
different sampling frequencies for storage depending
on variables: the reduced variables are densely sampled
in time whereas the full solution vectors are sampled
sparsely.

We train our model on the trajectory shown in
Fig. 9c. Figure9d shows the spectrogram for this tra-
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Fig. 9 Plots (a-d) show the MEMS device, with the design (a)
and the normalized displacement field for the first mode shape
(b). In both plots we indicate the reference output amplitude qA
as the displacement along the y-axis of the outer frame. Plot (c)
depicts the training data obtained from the commerical FE code
alongwith its spectrogram in (d) for the output amplitudeqA . Plot
(e) shows the amplitudes for qA of forced responses computed

via SSMLearn for two forcing amplitude values, also including
the backbone curve of the SSMLearn model and that obtained
by signal processing using the method Peak Finding and Fit-
ting [42]. Plot (f) depicts the error between some samples of the
forced response for the highest forcing amplitude predicted by
SSMLearn and their numerical validation

jectory along the coordinate qA, where we observe an
initial presence of a third harmonic besides the strong
signature of the principal frequency. We use a cubic-
order model for the geometry and a septic-order model
for the reduced dynamics, whose normal form approx-
imation is obtain via SSMLearn as

ρ̇ = −775.93ρ − 570.52ρ3 − 109.86ρ5 − 22.058ρ7,

θ̇ = 155183.20 + 31794.03ρ2 − 5697.20ρ4

−1094.84ρ6, (38)

and the resultingNMTE on the observable qA along the
training trajectory amounts to nearly 7%. We observe
that there is a good agreement between the backbone
predicted by the model (38) and that extracted by Peak
Finding and Fitting in Fig. 9(e).

We then add forcing, where we use a nodal force
at the location of qA to harmonically excite the frame
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Table 1 Computation times for numerical validation of 6 points
on the FRC, shown in Fig. 9f, using COMSOL Multiphysics®

6.0. For comparison purposes, the total time spent on the con-
struction of the SSM-based ROM for the MEMS and making
forced response predictions was about 5min and 40s

Forcing frequency [Hz] Simulation time [hours]

24,498 43.67

24,750 45.01

24,996 49.19

25,255 50.10

25,496 53.82

25,751 53.09

along the y axis. Finally, we use our SSM-based ROM
to make forced response predictions at two forcing
amplitudes (approximately 1.94 μN and 3.32 μN),
where the highest displacement amplitude is predicted
around 3 μm, as shown in Fig. 9(e). The total time
spent on the construction of this SSM-based ROM and
making forced response predictions was about 5min
and 40s.

To validate our predictions, we sample the upper
branch of the highest amplitude FRC in Fig. 9(e) at
six different frequencies near resonance, as shown in
Table 1. For these six attractors, we use the initial con-
dition on the periodic response predicted by our SSM-
based ROM as input for the time integration of the
forced system via COMSOL Multiphysics®. We sim-
ulate each initial condition for 50 cycles of forcing and
expect that the simulated trajectories will remain close
to our predicted periodic responses.We plot the NMTE
in Fig. 9(f), wherewe observe that the error in our SSM-
based prediction relative to the full system simulations
is lower than 2.5 %. The time spent on individual vali-
dations is recorded in Table 1.

Concluding remark:Generally, we cannot expect any
data-drivenmethod tomake reliable predictions outside
its training range. As the method receives no infor-
mation about the physical system outside its training
range, it will extrapolate the results when used out-
side that range. This extrapolation may or may not be
accurate. The training range in our examples is deter-
mined by the initial (maximal) displacement amplitude
of the unforced trajectory data. However, data-driven
and data-assisted SSMmodeling allows for a change of
the unforced nonlinear dynamical system into a forced

system within the training range and still provides reli-
able predictions for forced response based solely on
unforced training data. The predicted forced response
may involve nonlinear behavior that was completely
absent in the unforced dynamical system from which
the training data was taken. Indeed, SSM-based ROMs
trained on purely decaying training signals can pre-
dict attracting, repelling or saddle type periodic orbits
with heteroclinic connections among them, invariant
tori and even chaotic attractors [48]. These predictions
can be made irrespective of the nature of the forcing as
long as it is moderate in magnitude or speed [49], as is
the case in a number of applications. In the purely data-
driven setting, this enables forced-response predictions
based purely on unforced experiments [26]. In the
present data-assisted setting, it replaces a large number
of very costly forced-response simulations based on a
single unforced simulation, as we have demonstrated
for the MEMS example above.

5 Conclusion

In this work, we have developed a data-assisted
approach for nonintrusive model reduction of nonlin-
ear mechanical systems based on SSM theory. Our
approach uses unforced simulation data of an initially
displaced structure to fit an SSM of appropriate dimen-
sionality. Specifically, for a nonresonant structure, a
two-dimensional SSM around the fundamental natural
frequency governs the nonlinear response. For inter-
nally resonant systems, however, higher-dimensional
SSMs are necessary, based on the modes participating
in the internal resonance, as we have demonstrated.
Thus, we have developed a systematic procedure for
identifying SSMs and their reduced dynamics in non-
resonant as well as internally resonant systems.

Wehave shown that the SSMand its reduced dynam-
ics, which are learned from unforced data, can make
highly accurate forced response predictions for the full
nonlinear system. This is a direct result of SSM the-
ory, which postulates the persistence of SSM under the
addition of external forcing to the full system. We have
demonstrated accurate predictions of nonlinear forced
response for FE models of various mechanical struc-
tures comprising beams, shells, and three-dimensional
continuum-based elements.

For very high-dimensional systems, the main com-
putational bottleneck for obtaining these ROMs is the
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offline cost associated to the FE simulation of decaying
trajectories. However, these offline costs of unforced
simulations are marginal compared to the comprehen-
sive forced response predictions that are made using
the SSM-basedROM. Indeed, for ourMEMS resonator
example containing more than one million DOFs, the
offline cost of obtaining the training trajectory for this
ROMwas nearly 4.5 days. Using this training data, the
SSM-based ROM and the FRC were computed in less
than 6min. However, validating the predicted FRC at
only six points via full system simulations took more
than 12 days.

We fully expect that the data-assisted, nonintrusive
SSM reduction developed here will perform equally
well under parametric resonance [24], which will be
pursued in future work.
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A Non-modal graph style parametrizations

In principle, we can choose a coordinate chart as an
arbitrary projection to the reduced coordinate defined
by a matrix W0, cf. Figure10. By the invertibility of
coordinate chart and parametrization, we have that
W0V0 = I, and, by the linear invariance for the
parametrization, V0 must span the spectral subspace
E2m , i.e., V0 = VE2mP−1. If we multiply both sides

of this identity by W0, we have get the matrix P =
W0VE2m . This practically means that we are free to
choose the reduced-coordinate just using the linear pro-
jection viaW0, as long as the matrix P is not singular.
This guarantees our parametrization style to be valid
at least for a small neighborhood of the origin. The
linear part of the dynamics is R0 = PRE2mP−1. This
concept is useful for example for cases in which one
desires to use physically-meaningful coordinates in the
parametrization. An example is the POD modes in the
vortex shedding example of [26], the energy-type vari-
ables in [30]. In our context of mechanical system,
a possible choice is to use m generic displacement-
velocity pairs of the degrees of freedom (or their linear
combinations), as long as they are far from being nodes
of all the mode shapes related to the SSM. Here, the
autonomous reduced dynamics is a reduced mechani-
cal system for the chosen degrees of freedom qm , i.e.,
y = (qm, q̇m), and such a form can be really insightful
from a physical viewpoint. As an example for a two-
dim. SSM, if the first degree of freedom is not a node of
the mode shape related to the SSM, then W0 ∈ R

2×2n

can be chosen to be the projection to the first degree of
freedom and its velocity, i.e.,

{
(W0) j,k = 1 for ( j, k) = (1, 1), (2, n + 1)

(W0) j,k = 0 otherwise.
(39)

However, inserting the forcing in the model is not
as straightforward as in the case of a modal projection.
Indeed, the coordinate chart we choose would not, in
general, satisfy the linear invariance W0A = R0W0.
So, one needs attention when including forcing, as,
for example, Eqs. (21,22) do not hold. By writing
v̇1(�t) = Dv1(�t)�, in this case we have that

r1(�t) = W0Av1(�t) + W0f1(0,�t; 0),
v̇1(�t) = (I − V0W0)Av1(�t)

+(I − V0W0)f1(0,�t; 0). (40)

Therefore, forcing in the reduced dynamics is not
simply its modal component, but its form feature addi-
tional terms to be derived by solving a linear ODE.

B Properties of the regressed parametrization

Let vnl(y) = Vnly2:M where y2:M is the vector of all
n2:M monomials from order 2 to M in 2m variables,
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W0(E2m)

E2m

R
2n

v

w

projW0
(W0(E2m))

Fig. 10 Illustration of parametrization of an autonomous invari-
ant manifoldW0(E2m) (in blue, with a trajectory on it) using the
projection to an arbitrary linear subspace space represented by a
matrix W0 (in yellow, with the projected trajectory on it). This
subspace may be different from E2m but it must be such that the
matrixW0VE2m is not singular

these being the components of y ∈ C
2m . The min-

imization problem of Eq. (16) can be then rewritten
as

Vnl� = argmin
vnl

P∑

j=1

∥∥∥x j − V0y j − Vnly2:Mj
∥∥∥
2
. (41)

Let us define the matrix Ynl = [y2:M1 y2:M2 ... y2:MP ] ∈
C
n2:M×P .

Proposition B.1 If the rank ofYnl is equal to n2:M, the
optimal solution in Eq. (41) is unique and always such
that W0vnl(y) ≡ 0.

Proof One can show that the Vnl� can be computed in
closed form as the problem is a standard least squares
minimization, thereby taking the form

Vnl� = (X − V0Y)YH
nl (YnlYH

nl )
−1, (42)

where X = [x1 x2 ... xP ] ∈ C
2n×P and Y =

[y1 y2 ... yP ] = W0X ∈ C
2m×P . If the rank of Ynl is

equal to n2:M , then the square matrix YnlYH
nl is invert-

ible and Vnl� in Eq. (42) is the unique least squares
solution.Multiplying Eq. (42) byW0 and recalling that
W0V0 = I, we conclude that

W0Vnl� = (W0X − W0V0Y)YH
nl (YnlYH

nl )
−1

= (W0X − Y)YH
nl (YnlYH

nl )
−1 = 0. (43)

��
We note that the same orthogonality relation also

holds for weighted ridge regression, optionally avail-
able in SSMLearn [26].

C External periodic forcing in the normal form

Let us denote ζ = P−1y ∈ C
2m . Using these new

coordinates, we have that

ζ = P−1h(z,�t; ε) = ĥ(z,�t; ε)

= z + ĥnl(z) − εh1(�t),

z = h−1(Pζ ,�t; ε) = ĥ−1(ζ ,�t; ε)

= ζ + ĥ−1
nl (ζ ) + εh1(�t),

ζ̇ = P−1r(Pζ ,�t; ε) = r̂(ζ ,�t; ε)

= RE2m ζ + r̂nl(ζ ) + εr̂1(�t), (44)

where, for the case of periodic forcing introduced in
Eq. (25), we have that r̂1(�t) = gr

(
ei�t + e−i�t

)
. By

Fourier analysis, we can write

n1(�t) = gn+ei�t + gn−e−i�t ,

gn± = (
gn±
1 , gn±

2 , ..., gn±
m , ḡn±

1 , ḡn±
2 , ..., ḡn±

m

)�
,

h1(�t) = gh+ei�t + gh−e−i�t ,

gh± =
(
gh±
1 , gh±

2 , ..., gh±
m , ḡh±

1 , ḡh±
2 , ..., ḡh±

m

)�
,

(45)

and, by considering the O(ε)-term in the conju-
gacy equation Dzĥ(z,�t; ε)n(z,�t; ε) + D�t ĥ(z,
�t; ε)� = r̂(ĥ(z,�t; ε),�t; ε), we obtain

gn+
k ei�t + gn−

k e−i�t − i�gh+
k ei�t + i�gh−

k e−i�t

= −λ jk g
h
k e

i�t − λ jk g
h−
k e−i�t + gk

(
ei�t + e−i�t

)
,

ḡn+
k ei�t + ḡn−

k e−i�t − i�ḡh+
k ei�t + i�ḡh−

k e−i�t

= −λ̄ jk ḡ
h
k e

i�t − λ̄ jk ḡ
h−
k e−i�t + ḡk

(
ei�t + e−i�t

)
,

(46)

for k = 1, 2, ... ,m. If we solve for the coefficients of
the change of coordinates we get

gh±
k = gk − gn±

k

λ jk ∓ i�
, ḡh±

k = ḡk − ḡn±
k

λ̄ jk ∓ i�
, (47)

and we clearly see that when k ∈ R there will be small
denominator, as this correspond to resonant forcing for
which Im(λ jk ) ≈ �. Hence, we choose to keep only
such resonant forcing terms in the normal form dynam-
ics, thereby leading to
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gh+
k = gn−

k = ḡn+
k = ḡh−

k = 0, gn+
k = gk,

ḡn−
k = ḡk, gh−

k = gk
λ jk+i�, ḡh+

k = ḡh−
k , if k ∈ R

gh±
k = gk

λ jk ∓ i�
, ḡh±

k = ḡk
λ̄ jk ∓ i�

, otherwise.

(48)
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