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Finite-size particle motion in fluids obeys the Maxey–Riley equations, which become singular in the
limit of infinitesimally small particle size. Because of this singularity, finding the source of a
dispersed set of small particles is a numerically ill-posed problem that leads to exponential blowup.
Here we use recent results on the existence of a slow manifold in the Maxey–Riley equations to
overcome this difficulty in source inversion. Specifically, we locate the source of particles by
projecting their dispersed positions on a time-varying slow manifold, and by advecting them on the
manifold in backward time. We use this technique to locate the source of a hypothetical anthrax
release in an unsteady three-dimensional atmospheric wind field in an urban street canyon. © 2009
American Institute of Physics. �DOI: 10.1063/1.3115065�

I. INTRODUCTION

Small inertial particles in a fluid flow and ideal fluid
tracers behave differently, even if they have the same density.
This is because ideal tracers follow the infinitesimal fluid
particle motion generated by the fluid velocity field, while
inertial particle dynamics is governed by the Maxey–Riley
equations �cf. Maxey and Riley�.1 These equations describe
the motion of a small rigid sphere in an unsteady Stokes
flow. Auton et al.2 derived a correction to the added mass
term in the equations. This correction, however, is insignifi-
cant for small particles, and hence will be neglected in this
paper.

Because of the wide range of their applications, the
Maxey–Riley equations have been studied extensively in all
regimes where the particle density is larger �aerosol�, equal
to �neutrally buoyant� or less �bubble� than the fluid
density.3–6 As mentioned in Benczik et al.,4 an important
application of such studies is pollutant-transport forecasting
for homeland defense and threat reduction purposes. Equally
important is locating the source of a toxin or biological
pathogen spill from outbreaks based on sensor data and
available large-scale flow information.

The Maxey–Riley equations, in principle, give a tool
for locating the origin of atmospheric particle pollution
from dispersed particle positions, provided that diffusion ef-
fects are negligible. In practice, such a source inversion pro-
cedure is challenging due to a strong instability of the equa-
tions in backward time. Because of this instability, even
high-precision numerical schemes lead to a blowup of
backward-time trajectories, and hence source identification
cannot be achieved in a reasonable time with reasonable
accuracy.

Recently, Haller and Sapsis7 overcame this instability
problem by inverting the flow of particles on a lower-
dimensional slow manifold, which they constructed explic-
itly for any type of finite-size particle �bubble, aerosol, or
suspension�. This source inversion procedure renders the ini-
tial location of particle release, but not the initial velocity of
the particles; the latter information is lost due to the reduc-
tion to the slow manifold. The initial position, however, is
located with high accuracy and little computational effort,
because the strong instability mentioned above lies in a di-
rection transverse to the slow manifold.

In the present paper, we implement the above source
inversion approach for the first time in a spatially complex
three-dimensional unsteady flow. Motivated by homeland
security applications, we consider a hypothetical anthrax
release event in a three-dimensional unsteady wind field
inside an urban street canyon. The numerical data of the
urban flow was generated from an unsteady Reynolds-
averaged Navier–Stokes �RANS� equation model using the
renormalization group k−� turbulence closure. Unsteady
RANS approaches are described in many papers �e.g., Sini
et al.8�; the flow geometry is set to be the same as Kim and
Baik,9 unsteadiness is introduced via varying ambient wind
speed.

In this urban flow, we compute both the slow manifold
and the inertial equation that governs the dynamics on the
slow manifold. We first demonstrate that source inversion
fails when high-precision numerical integration is attempted
on the solutions of the full six-dimensional Maxey–Riley
equations. We then show how source inversion can be car-
ried out using the inertial equation on the three-dimensional
slow manifold.

Although demonstrated here only for an urban flow ex-
ample, source inversion in other turbulent flows can be car-
ried out in the same manner, provided that the Maxey–Riley
equations are valid for the particles considered.
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II. GOVERNING EQUATIONS

Following several prior studies,5,7,10 we neglect the ef-
fects of the Bassett history force in the original Maxey–Riley
equations. Due to the small size we assume for the particles,
the Faxén correction term is also negligible �cf. Benczik
et al.�.4 Under these assumptions the nondimensionalized
particle position x�t� and particle velocity v�t� at time t sat-
isfy the simplified Maxey–Riley equations

ẋ = v, v̇ −
3R

2

Du

Dt
= −

1

�
�v − u� + �1 −
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2
�g , �1�
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locity, and

R �
2� f

� f + 2�p
, St �

2

9
� a

L
�2

Ref, � �
St

R
.

Here � f and �p are the densities of the fluid and of the
particle, respectively; R is the density ratio distinguish-
ing neutrally buoyant particles �R=2 /3� from aerosols
�0�R�2 /3� and bubbles �2 /3�R�2�; a is the radius of
the spherical particle; L is a characteristic length scale of the
flow; the fluid Reynolds number is Ref �UL /�, with typical
large-scale fluid velocity U and fluid viscosity �; time is
nondimensionalized with the characteristic time scale L /U.

The Stokes number St measures the dimensionless re-
sponse time of the particle motion due to the characteristic
ambient time scale L /U;14 � quantifies the importance of
inertia. The limit �→0 corresponds to ideal passive tracers;
the effect of inertia is more pronounced with larger �. For
the Maxey–Riley equations and Eq. �1� to be a valid
approximation, the particle motion must satisfy a /L�1,
Rep���v−u��a /��1 and St�1, where Rep is the particle
Reynolds number.

III. SLOW MANIFOLD AND INERTIAL EQUATION

There have been several studies discussing the asymp-
totics of Maxey–Riley equations for steady flows.10–12 More
recently, Haller and Sapsis7 derived general results for the
equations under unsteady flow conditions, which are the fo-
cus of the present paper.

Since St�1, � is a small number, we can introduce the
fast time � via dt /d�=�. Haller and Sapsis7 prove that a
globally attracting three-dimensional, time-dependent invari-
ant manifold M� exists in the six-dimensional phase space of
Eq. �1�. M� is a slow manifold that can be written in the form

M� = 	�x,v�:v = u + ��3R

2
− 1�
Du

Dt
− g� + O��2�� . �2�

Particle motion on the slow manifold satisfies the
inertial equation7

ẋ = u�x,t� + ��3R

2
− 1�
Du�x,t�

Dt
− g� + O��2� . �3�

Analogous equations were also derived by Refs. 5 and 13–16

using formal asymptotic expansions of the velocity field. The
invariant manifold approach used by Haller and Sapsis7 jus-
tifies these formal solutions. The approach also yields a spa-
tially dependent bound on � over which Eq. �3� loses its
relevance due to the instability of the slow manifold �Sapsis
and Haller17�. The stability bound derived there is for neu-
trally buoyant particles, but we can obtain such a bound for
aerosols in the same fashion.

The truncated first-order approximation to the particle
velocity for arbitrary density can be written as

d

dt
�v − u� = − �v − u��3R

2
� u +

1

�
I� + �1 −

3R

2
�g , �4�

where I is the identity matrix. For small and heavy particles
�R�1�, the last term on the right-hand side of Eq. �4� is
negligible. We, however, keep the �3R /2��u term since the
flow gradients can be large.

Using the results of Sapsis and Haller,17 we find that for
the slow manifold to remain as an attractor for inertial par-
ticle velocity, we must have

�min
I +
3�R

2
S�x,t�� 	 0. �5�

Here �min�I+ �3�R /2�S� is the minimum eigenvalue of the
matrix I+ �3�R /2�S, with S= ��u+ ��u�T� /2 denoting the
rate-of-strain tensor. Over any fixed spatial and temporal do-
main of interest, condition �5� specifies an upper bound on �
below which the inversion procedure described in the fol-
lowing section is valid.

IV. SOURCE INVERSION
USING THE SLOW MANIFOLD

For any initial position and for small enough �, particle
motions will converge to the slow manifold M� and synchro-
nize with solutions of Eq. �3�. In forward time, therefore, the
asymptotic dynamics of the full Maxey–Riley Eqs. �1� are
captured by the inertial Eq. �3�.

Now consider the problem of locating the source of
some nondiffusive contamination by finite-size particles.
This problem involves solving Eq. �1� in backward time
from known dispersed positions until the trajectories all
reach a small enough volume considered the source. In prin-
ciple, Eq. �1� has unique regular solutions in backward time,
but the −v /� term causes an inevitable blowup of numerical
solutions over longer time scales. Reducing the integration
time step delays the blowup process, but also significantly
increases the total time to locate the source.

Using the slow manifold M�, the initial positions of dis-
persed particles can be recovered with an error of O���.7 The
source inversion procedure leading to this result involves
two steps: �i� projection onto the slow manifold by setting v
to be the right-hand side of Eq. �3� for the dispersed particles
and �ii� solution of Eq. �3� starting from the projected dis-
persed positions. Note that Eq. �3� shows no instability in
backward time, and hence its backward-time solutions are
obtained without any numerical difficulty. If the trajectories
obtained in this fashion approach each other within an O���
distance, then they are also O��� close to their source.7
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V. DATA SET

In this paper, we demonstrate the use of the above source
inversion principle for a hypothetical anthrax release event in
a three-dimensional unsteady wind field inside an urban
street canyon. The geometry of the urban flow is an array of
4
4 square buildings, the numerical data is generated from
an unsteady RANS equation model using the renormalization
group k−� turbulence closure.9 The governing equations are
solved on staggered grids using a finite volume method; im-
proved resolution is placed near the ground and building
walls. We focus our analysis on the center of this geometry
since the flow is better resolved there.

The flow inside the urban canopy is induced by external
flow upstream, blowing at an angle toward the positive
x-direction. For the present analysis, unsteady ambient wind
forcing with variable speed has been implemented to model
gusty winds in the urban street canyon. The angle of attack,
defined as the angle between the direction of the ambient
wind and a unit vector in the positive x direction, is 15°. The
time step in the numerical model is 0.05 s; we use model
output at every 0.2 s to study the dynamics of finite-size
particles in this flow. Following Kim and Baik,9 we refer to
the x-direction as West-East and y-direction as South-North.

The major flow structure inside the street canyon is a
portal vortex originating from the Southeast corner of the
upwind building, which reattach to the ground at different
locations near the Northern corners of the buildings, depend-
ing on the ambient wind speed. With the incoming wind
blowing at an angle, there is also a horseshoe vortex near
ground at the Southwest corner of the downwind building.
This vortex allows entrainment of fluid particles originated
from the Southern streamwise canyon to traverse the span-
wise canyon and exit to a Northern streamwise canyon. Our
flow system introduces time dependence in a quasisteady
fashion using unsteady RANS; the main flow features are the
same as those discussed in detail in Kim and Baik.9

VI. LAGRANGIAN COHERENT STRUCTURES
IN THE FLOW

We visualize the flow structure inside the urban street
canyon using direct Lyapunov exponents �DLE�.18–20 Spe-
cifically, we integrate the ordinary differential equation
ẋ=u�x , t� starting from position x0 at time t0, to obtain fluid
particle trajectories x�t ;x0 , t0�. We then compute the largest
eigenvalue �max�t ;x0 , t0� of the Cauchy–Green strain tensor
��x�t ;x0 , t0� /�x0�T��x�t ;x0 , t0� /�x0�, where AT denotes the
transpose of A. The DLE field over the set of initial positions
x0 is defined as �t0

t �x0�=ln��max�t ;x0 , t0�� / �2�t− t0��. This
quantity measures the largest rate of expansion among infini-
tesimal vectors originating from x0.

Local maximizing sets �ridges� of the DLE field are dis-
tinguished sets of fluid particles that repel nearby trajectories
over the time of integration. We refer to such distinguished
sets as repelling Lagrangian coherent structures �LCSs�, as
they turn out to evolve as near-material surfaces.20,21 Repel-
ling LCS separate regions of different flow behaviors, and
highlight the flow structures inside the street canyon in a
frame-independent fashion.

When computed in backward time, ridges of the DLE
field mark the position of attracting material surfaces, or
attracting LCS. These distinguished material surfaces serve
as local targets for particles, and hence their shape deter-
mines the main geometry of dispersed particle positions over
longer time scales. Indeed, repelling and attracting LCS are
finite-time analogs of stable and unstable manifolds.

In Fig. 1, we show the isosurface of 83% of the maxi-
mum of the backward-time DLE field. This isosurface ap-
proximates the strongest attracting LCS, providing the
Lagrangian signature of a portal vortex as discussed in Kim
and Baik.9 As seen for this particular time, one of the foot-
prints of the portal vortex is inside the spanwise canyon,
whereas the other is at the Northeast edge of the upwind
building.

To illustrate fluid motion near this canyon, we plot two
infinitesimal fluid particle trajectories starting from the South
of the upwind building. The fluid particle starting near the
ground is entrained into the portal vortex. This particle mo-
tion highlights the swirling region, whereas the fluid particle
starting above the buildings is advected by the flow outside
the urban canopy, moving at almost 15° toward the positive
x-direction at all times. The shape and location of the portal
vortex varies with changes in the external forcing. For ex-
ample, the footprint of the vortex at the Northeast edge of the
upwind building moves to the Northwest edge of the down-
wind building at a later time of the simulation. Nevertheless,
the portal vortex structure is prevalent over the duration of
the simulation. Note that in Fig. 1, as in the rest of the paper,
the plots are in dimensional units.

VII. LOCATING THE SOURCE OF ANTHRAX RELEASE

We release a set of inertial particles representing anthrax
spores inside the streamwise canyon to study the dispersion
and source inversion of a hypothetical pollutant outbreak
event. By a rough estimate, a typical anthrax spore of radius
10 �m weighs about 500 times than an air blob of the same
size.4 The characteristic length scale of the model flow
L=9.56 m is the width of the street canyon �same as
the building width�, and the characteristic velocity scale
U=3.5 m /s is the time-averaged velocity norm at the upper
boundary of the computational domain.

In this setting, we have the density ratio R
2
10−3,
aspect ratio a /L
1.05
10−6, Stokes number St
8.14

10−7, fluid Reynolds number Ref =3.35
106. All this
gives �
4.07
10−4. Because finite-size particles converge
to the slow manifold M�, we compare the slow manifold
velocity with the background velocity, finding that
�v−u��1 m /s, and hence the particle Reynolds number sat-
isfies Rep�1. Additionally, the time scale over which mo-
lecular diffusion will carry anthrax spores across the building
width is much greater than the advection time scale
T=2.73 s. Therefore, we are within the regime of the valid-
ity of Eqs. �1�–�3�.

We recall that the slow manifold M� is a time-varying
three-dimensional graph over the three-dimensional phase
space of x �or, equivalently, a time-independent four-
dimensional graph over the extended phase space of the x
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and t variables�. We visualize this slow manifold by first
taking a z�t�=zp�t� slice of M�—where zp�t� is the time-
varying vertical coordinate of an inertial particle, then plot-
ting the resulting two-dimensional time-varying surface in
the �x ,y , �v�� coordinate space.

Figure 2 shows the projection of such a two-dimensional

slice of the slow manifold at zp=0.7525 m, 6 s after the
release of a finite-size particle at rest. The color scale indi-
cates the magnitude of the slow manifold velocity �v� at
height zp; the largest value is between the two upwind build-
ings in the streamwise canyon �only one of the upwind build-
ings is shown�. The black solid line shows the evolution of
the horizontal location �x ,y�, as well as the velocity norm �v�
of the finite-size particle we are following, where the particle
velocity is the solution of Eq. �1�. After the initial release of
the particle with zero velocity, it accelerates quickly �hence
the vertical “shoot-up” of the particle velocity� to synchro-
nize with the slow manifold velocity. Subsequently, the par-
ticle stays close to the slow manifold.

In Fig. 3, we study particle dispersion and inversion us-
ing the full Maxey–Riley Eqs. �1�. A set of 9702 finite-size
particles representing anthrax spores are initially released at
the Southeast edge of an upwind building at rest. This emu-
lates the case of free release of a toxin by humans in urban
streets. We use a fractional-step, semi-implicit numerical
scheme to integrate Eq. �1� for particle trajectories. Particle
velocities are solved for on fractional time step using a three-
stage, fourth-order Lobatto IIIA method,22 particle positions
are solved for using the regular fourth-order explicit Runge–
Kutta method. The time stepping for forward-time trajecto-
ries is 0.005 s and that for the backward-time trajectories is

FIG. 1. �Color online� The view of an isosurface of the backward-time DLE field in the street canyon. The straight solid lines show the urban canyon geometry
and the green isosurfaces outline the core of a portal vortex. The two black solid lines outline two fluid particle trajectories starting from the South of an
upwind building, their directions marked by the small white triangles. The ambient wind direction is indicated by the big arrow at the top left corner of the
figure. The unsteady forcing in this model �varying ambient wind speed� changes the shape and location of the portal vortex but does not threaten its existence.

FIG. 2. �Color online� Projection of the two-dimensional z=zp�t� slice of the
slow manifold to the �x ,y , �v�� coordinate space. �Here zp�t� is the time-
varying z-coordinate of an inertial particle released near an upwind build-
ing.� The black solid line inside the street canyon indicates the particle’s
horizontal location and its velocity norm. Note the quick acceleration and
convergence of the particle toward the slow manifold.
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0.001 s. This ensures better numerical stability in the evolu-
tion of particle velocity. A typical particle trajectory is cho-
sen for Fig. 3 to demonstrate the quick blowup when solving
for Eq. �1� in backward time.

The release location of the particle is indicated by the
blue sphere. The forward-time particle trajectory in the next
20 s �the blue line� shows that this particle is entrained into
the horseshoe vortex and traverses the spanwise canyon. Its
end location is marked by a red sphere. Directly integrating
Eq. �1� in backward time leads to numerical instability in the
vicinity of the start of the inversion �the black trajectory and
sphere showing that the inverted particle is erroneously leav-
ing the domain�. The inset shows an enlarged vision of the
blowup, very shortly after the start of the inversion. The
blowup occurs because we are practically integrating an
equation of the type v̇=−v /� in backward time with ��1.
Numerical error quickly accumulates even though a highly
accurate implicit scheme is used to solve this equation. In
Fig. 4, we randomly choose five trajectories in different flow
regions, and integrate them in backward time using Eq. �1�.

The result shows that even with the higher-order numerical
method we use, the numerical blowup of backward-time tra-
jectories is inevitable.

Motivated by the smallness of the parameter �, we have
also considered the inversion using the ambient flow velocity
u. This idealized inversion process neglects all inertial ef-
fects in locating the source of the contamination. The results
are shown in Fig. 5. The cyan solid line and sphere show the
backward-time trajectory and the final position obtained
from the idealized source inversion procedure. Clearly, by
comparison with the forward-time trajectory and the true
source, this procedure leads to a bounded yet inaccurate
result.

Even though u only differs by an O��� term from the
right-hand side of the inertial Eq. �3�, the backward trajecto-
ries of the two velocity fields can be very different. This is
because Eq. �3� on the slow manifold has sensitive depen-
dence on initial conditions; as a result, even an O��� pertur-
bation to it can lead to dramatically different trajectories over
appropriately long time scales.

Finally, we demonstrate the source inversion technique
proposed by Haller and Sapsis.7 We solve Eq. �3� in back-
ward time using a fourth-order explicit Runge–Kutta method
with the results shown in Fig. 6. Inversion trajectory and
inverted source location are marked by the green line and
green sphere. As seen in the figure, the backward-time par-
ticle trajectory obtained from the inertial Eq. �3� is indistin-
guishable from the forward-time particle trajectory except in
the vicinity of the source �cf. the inset�.

In Fig. 7, we show the advantage of using the slow
manifold approach in source inversion for an ensemble of
9702 particles released at 1.5 and 8 m from rest near the
Southeast corner of the upwind building. The end locations
of these particles 20 s after release are shown as red sphere
that outline the main flow features.

We compare the results of source inversion for the two
numerically stable approaches. On the left of Fig. 7, source
inversion is carried out using fluid velocity. Inverted

FIG. 3. �Color online� Anthrax dispersion and its inversion using the full
Maxey–Riley Eq. �1� for one of the ensemble of trajectories. The blue
sphere indicates the original release location of the particle near the upwind
building. The blue solid line indicates the forward-time dispersion of this
particle and the red sphere shows its end position 20 s after release. Direct
backward integration of Eq. �1� �black solid line and sphere� indicates a
quick numerical blowup of the trajectory in backward time. The inset shows
this blowup even at the very beginning of the source inversion.

FIG. 4. �Color online� Five random trajectories chosen from different re-
gions of the flow. Their inversion using Eq. �1� shows that numerical blowup
is inevitable for the inversion procedure used. The color schemes are the
same as in Fig. 3.

FIG. 5. �Color online� Source inversion using ẋ=u�x , t�. The cyan solid line
indicates a backward-time particle trajectory for �=0, i.e., the trajectory of
an infinitesimal fluid particle. This trajectory does not blow up but is inac-
curate. The inset shows its deviation from the true particle trajectory �blue
solid line� from the start of the inversion.
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“sources” are shown as cyan spheres. The result shows sub-
stantial deviation from the true sources.

On the right of Fig. 7, we use the inertial Eq. �3� to
advect particles in backward time. The inverted sources are
marked by green spheres. Note that almost all particles return
closely to their origin. The handful of inaccurate trajectories
are due to numerical errors coupled with sensitive depen-
dence on initial conditions in the chaotic flow generated by
Eq. �3�.

It is worth noting that most trajectories on the right of
Fig. 7 return to the same small volume, pinpointing that the
Southeast edge of the upwind building was the site of the
outbreak. Therefore, using the inertial equation enables us to
locate the contamination source without knowing explicitly
the time of release.

As proved in Haller and Sapsis,7 the difference of in-
verted particle positions near the source is O��� small, i.e., of
the order of centimeters in our present example. Since there
is no numerical instability on the slow manifold, a much
larger time step is sufficient when we compute backward-
time particle trajectories. This enables fast response to an
event of pollutant outbreak.

VIII. DISCUSSIONS AND CONCLUSIONS

In summary, an exponential instability in the backward-
time Maxey–Riley equations makes it practically impossible
to find the release location of contamination by small par-
ticles. By contrast, projection onto, and subsequent backward
integration along, the slow manifold renders the release lo-
cation with high accuracy.

In a practical implementation, the manifold-based source
inversion procedure used here works on time scales where
diffusion can be neglected relative to advection, and time-
resolved wind data are available in the spatial region of in-
terest. Such wind data may be obtained from ground-based
LIDAR scans or from numerical simulation fitted to sensor
observations.

Our numerical experiments showed that the slow-
manifold-based source inversion scheme proposed by Haller
and Sapsis7 accurately recovers the initial position of a set of
nondiffusive particles even under fairly complex geometries.
Only a handful of particles �out of thousands� go astray in
the inversion procedure due to numerical inaccuracies in
their advection. Such a small leakage is inevitable in invert-
ing a complex flow numerically; its extent can be reduced by
choosing a more accurate backward numerical advection
scheme on the slow manifold.

An interesting question is the maximal value of
�=St /R below which the inversion procedure employed here
is valid. A limitation on the admissible � in a particular flow
field is given by inequality Eq. �5�. When this inequality
fails, the slow manifold develops local instabilities, but it
may still keep acting as a global attractor for particles, vali-
dating our inversion procedure. We expect the latter to be the
case for moderately turbulent flows. The inversion procedure
is certain to fail if the slow manifold suffers a global loss of
stability, i.e., Eq. �5� fails to be satisfied on most of the flow
domain of interest. Such a global instability requires large
velocity gradients typical in severely turbulent flows.

In our experience, a global loss of stability for the slow
manifold is preceded by the breakdown of the Maxey–Riley
equations as a reasonable approximation for inertial particle
motion. For higher particle Reynolds numbers that are still
below Rep=1000, we may use the Basset–Boussinesq–Oseen
�BBO� equations instead of the Maxey–Riley equations
�Crowe et al.�.23 The structure of the BBO equations is simi-
lar to the Maxey–Riley equations, while some of the param-
eters in the BBO equations are fitted to match experiments.
Because of the structural similarities �notably, the presence
of two time scales in the particle dynamics�, the slow mani-
fold and the associated source inversion approach described
here remain applicable to the BBO equations, provided that
the slow manifold remains globally attracting.

FIG. 6. �Color online� Source inversion on the slow manifold using Eq. �3�.
The green line is the backward-time particle trajectory; its end position
marked by the green sphere. Note that the inertial particle ends up close to
its source of release when solved for using Eq. �3�. The inset shows an
enlarged view at the end of the inversion.

FIG. 7. �Color online� Source inversion using fluid velocity and slow mani-
fold velocity for two clusters of particle clouds �total of 9702 particles�. The
clusters start at the Southeast edge of an upwind building, as blue cubic
blobs. Particle positions 20 s after release are shown as red spheres. Inver-
sion by fluid velocity �cyan spheres� show significant inaccuracies due to
trajectories entering different flow topologies. Inversion by slow manifold
velocity �green spheres� shows excellent accuracy with only very few ex-
ceptions. The latter are due to numerical inaccuracies in solving the flow on
the slow manifold in backward time.
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