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We derive analytic criteria for the existence of hyperbdhdtracting or repelling elliptic, and
parabolic material lines in two-dimensional turbulence. The criteria use a frame-independent
Eulerian partition of the physical space that is based on the sign definiteness of the strain
acceleration tensor over directions of zero strain. For Navier—Stokes flows, our hyperbolicity
criterion can be reformulated in terms of strain, vorticity, pressure, viscous and body forces. The
special material lines we identify allow us to locate different kinds of material structures that
enhance or suppress finite-time turbulent mixing: stretching and folding lines, Lagrangian vortex
cores, and shear jets. We illustrate the use of our criteria on simulations of two-dimensional
barotropic turbulence. @001 American Institute of Physic§DOI: 10.1063/1.1403336

I. INTRODUCTION data sets, as they are “artifacts” of the periodic or quasiperi-
odic assumption on the underlying velocity field. One can
A goal in this paper is to provide mathematically exactstill seek such structures in special infinite-time, nonperiodic
and frame-independent criteria for the identificationLat  flows with certain uniformly recurrent featurésee Malhotra
grangian coherent structureis two-dimensional turbulence. and Wigginé). However, it appears that understanding the
Roughly speaking, such structures are special material lingisagrangian dynamics of real-life nonperiodic flow data re-
that have a major influence on the kinematics of mixing overquires new approaches.
finite time intervals. We aim to classify these structures and  Two-dimensional turbulent flows clearly admit Lagrang-
provide computable criteria that can be used to locate thenan organizing structures, as evidenced by the existence of
in numerical or experimental velocity data. vortex cores and material filaments in detailed numerical
Lagrangian coherent structures have long been recogimulations(see, e.g., Elnmdi et al® and Ziemniaket al®).
nized in models of two-dimensional chaotic advection: stableAs a first attempt, one may try to infer the location of these
and unstable manifolds and KAM tori are all material linesLagrangian coherent structures from instantaneous stream-
that either enhance or inhibit mixin@ee, e.g., Aref and El line configurations. In particular, one may release trial mate-
Naschié for a recent review and Rom-Kedafor further  rial lines near “Eulerian” unstable manifolds found in in-
developments These structures have first been studied instantaneous plots of the velocity field, and expect that they
the nonlinear dynamical systems literature and then adoptecbnverge to actual Lagrangian coherent structures. This tech-
to explain features of fluid flows with periodic or quasiperi- nigue was apparently first employed in Ridderinkhof and
odic, i.e., regular time dependence. It turns out, however, thdtoder for a numerically generated periodic velocity field,
assuming exact periodicity for a flow field is a more far- followed by several works on more general velocity fields
reaching assumption than one might first think. Being able tgsee Miller et al.® Rogersonet al.,? Koh and Plumb? and
generate the flow forll times from a one-period velocity Coulliette and Wiggins). Studying this approach, Haller
sample is crucial in order to define classical stable and unand Pojé? gave a mathematical criterion under which Eule-
stable manifolds. In this sense chaotic advection, with itgian unstable manifolds indeed indicate a multitude of nearby
attendant homoclinic tangles and lobes, has a solid founddinite-time unstable manifold®r the Lagrangian dynamics
tion only for regularly repeating velocity fields defined over (see Poje and Hall&tand Velasco Fuent&for applications
infinite time intervals. While such velocity fields are relevantof the criterion). They also showed how violating the crite-
in a number of applications and first-order models, turbulention may lead to “phoney” Lagrangian structures. To avoid
flows admit general time dependence, a fact that prevents thbe frame-dependent nature of the stagnation point-based ap-
extrapolation from a finite-time velocity sample to infinite proach, Bowmat? has suggested relative dispersiéfinite
times. As a result, all traditional definitions of stability, in- strain”) as a diagnostic tool to find finite-time unstable mani-
stability, or neutral behavior are naturally lost. The problem folds in atmospheric flows with no stagnation poiritee
however, is not just a matter of definitions: complicated geo-also Jones and Winkl¥rand Winklet’). This approach is
metric structures such as chaotic tangles or KAM tori that areessentially a quick and smooth way of approximating finite-
typical in infinite-time periodic or quasiperiodic velocity time Lyapunov exponent plots that tend to reveal similar
fields (cf. Otting®) simply do not exist in finite-time turbulent  structures(see, e.g., Pierrehumb¥tand Pierrehumbert and
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Yang'®). As a further step in this direction, Joseph andand prove properties of material lines that spend longer times
Legrag® have recently employed finite-size Lyapunov expo-in the corresponding elliptic, parabolic, and hyperbolic sets,
nents in the detection of finite-time invariant manifolds in &(1), P(1), and H(l). In particular, attracting or repelling
atmospheric flows. The connection between Lagrangian avnaterial lines either stay ifZ(l) or stray into the elliptic
erage velocitie$Malhotraet al?! and Mezicand Wigginé?  regions for short times that we can estimate from above.
and finite-time Lagrangian structures in turbulence was studklliptic material lines stay irf(l) for longer times that we
ied numerically in Pojeet al® can estimate from below, and parabolic lines stayP{n).

In an effort to locate Lagrangian coherent structuresThis approach gives a fully frame-independent way of locat-
(LCS) rigorously without the use of stagnation points, ing Lagrangian coherent structurdsCS), the locally most
Halle”* proved a Lagrangian version of the Okubo—Weissrobust hyperbolic, elliptic, and parabolic material lines. Hy-
criterion (cf. Sec. VA that identifies finite-time invariant perbolic LCS are responsible for advective mixing over
manifolds in a Galilean-invariant way. Haller and Yéan finite-time intervals: in particularstretch linessplit up fluid
simplified this “‘a— B criterion” for incompressible flows blobs that in turn are attracted fold lines We define elliptic
and showed how Lagrangian coherent structt&®S) can  LCS as Lagrangiarvortex coresthat inhibit mixing, and
be defined and found rigorously in general turbulent flows parabolic LCS ashear jets
They identify attracting LCSdistinguished finite-time un- As an interesting side-result, we derive a version of our
stable manifolds and repelling LCS(distinguished finite-  criteria that predicts Lagrangian finite-time hyperbolicity
time stable manifoldsin general velocity fields. This ap- purely in terms of strain, vorticity, pressure, viscous, and
proach is Galilean-invariant, but still frame-dependent, i.e.pody forces for incompressible Navier—Stokes floves.
gives different results in different rotating frames. Exploiting Sec. IV Q. This result offers hope that the approach we pro-
this frame dependence, Lapeyeeal?® suggested that for pose in this paper will ultimately lead to an understanding of
better results, thex— 3 criterion should be applied in a physical causes behind increased mixing in specific regions
frame co-rotating with the eigenvectors of the rate of strairof a turbulent flow.

(cf. Sec. V B. A three-dimensional extension of the- g We also propose and test different ways to visualize the
criterion appears in Halléf, where attracting and repelling above Lagrangian structures in finite-time velocity data. We
material surfaces and lines are located for time-dependepply these techniques to extract Lagrangian coherent struc-
three-dimensional flows. tures from numerical simulations of barotropic turbulence

A shortcoming of the above analytic approaches to LCIcf. Provenzaleet al?®). We conclude the paper with a sum-
is their dependence on the coordinate frame. This makes inary of our results and a list of open questions.
difficult to locate regions of intense Lagrangian mixing in a
variety of flows that admit a nonzero and spatially nonuni-
form mean yelocity. Since such flow_s rarel_y display closed;, saTE OF STRAIN, ZERO STRAIN SET, AND STRAIN
streamfunction contours and stagnation points, one does N@lccELERATION
quite know where to look for regions of distinguished La-
grangian behavior. Passing to an appropriate moving frame Consider a two-dimensional velocity fielgx,t) defined
will generally introduce stagnation points and closed con-on some finite time interval. For simplicity, we shall as-
tours. However, one can create such structures in any desigume that the flow generated lyis incompressible, i.e.,
nated flow region via appropriate time-dependent coordinat¥ - v=0. We shall use the notation
changes, a fact that questions the distinguished role of any S=L(Vv+(W)T)

Eulerian coherent structure created by a change of frame. 2 '
Several important flows of geophysical fluid dynamics poseor the rate-of-strain tensor. Note that by incompressibility,
related challenges, including those with meandering jets suckither det§) # 0 or S= 0 holds for anyx andt. We also recall
as the Gulf Stream, or wave breaking events such as thoskat for an infinitesimal line elemerd{(t) advected along a
observed on the edge of the stratospheric polar vortex. Alfluid particle, we have

this calls for a new approach to LCS that is fully frame-

independent, i.e., invariant under time-dependent rotations = —|4%=(£58), (1)
and translations. 2 dt

~ Motivated by the above need, in this paper a new frameyhere (-,-) denotes the usual Euclidean inner product. By
independent way of locating Lagrangian coherent structureg,compressibility, ifS is nonsingular, then it admits a posi-

in two-dimensional turbulence is offered. Taking a LyapunoVyjye and a negative eigenvalue that add up to zero. In such a
function approach to the stability of individual fluid trajecto- ¢ase the zero strain set,

ries, we obtain a partition of the physical space into elliptic,
parabolic, and hyperbolic regiof&PH) based on the defi- Z={¢|(&S¢)=0}, 2

niteness of the strain acceleration tensor over directions qf 5 set of two orthogonal lines. In a general turbulent flow
zero strain. When viewed instantaneously, these regions tugpe diagonal elements @ are typically nonzero, in which
out to coincide with those that one would infer from the 5567 is spanned by the vectors

application of a nonrigorous Eulerian principle, the Okubo—
Weiss criterion in the strain basisf. Sec. V B. However, £ (xt)= 22
we extend these regions in space-time over a time intéyval ' —s1— |9/ J2

+ t—( S22 3
,§ (Xv )_ _512+|S|/\/§ ’ ()
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with s;; denoting the entries & and|S|= \/Ei,js?j referring gt CEN<O g
to the Euclidean matrix norm @&.2° Note thatZ depends on ‘

x andt, but we suppress this for notational simplicity. The CEH>0
length of the vectorg™ will play no role in our analysis so
they can be normalized to one. In the expressions above we
omitted this normalization for simplicity.

A further important quantity will be the symmetric
matrix*°

) CEHn>0
M =S+ 2SVv, (4)
whereS=v-VS+ (d/dt) Sis the material derivative o§.31:3? C(E,1)<0
We shall refer toM as thestrain accelerationtensor, since
for the line e|emeng introduced above’ FIG. 1. The sectorﬂﬁ(t) andW¥ ~ (t) of the unit circleC.
1d? " .
m|§| =(&EME). (5a)

While the behavior of solutions relative to the cir¢lés
In continuum mechanical termb) is a physically objective clear both for zero and nonzero rate of strain, it is not imme-
material derivative 0B, sometimes called the Cotter—Rivlin diately clear whether solutions lying instantaneously on the

derivative ofS (see Cotter and Rivliit or Beda et al34). zero strain se¥ cross from¥ " (t) to ¥ (t) or the other
We shall denote the restriction of the tenddrto the  way around. However, a simple Lyapunov function-type ar-
zero strain seZ by M, i.e., we let gument can be used to decide which way the solutions cross:

trajectories along the vect@” are instantaneously crossing
Mz=M|. (5D from the sector¥ () to W*(t) if the function C(£1) is

We callM 5 positive/negative definite, semidefinite, or indefi-instantaneously increasing alo#gi.e.,

niteif (£,M &) is a positive/negative definite, semidefinite, or

indefinite quadratic form fo&e Z. Incompressibility turns E + s Sy
out to imply the following property oM. dtc(g (D).0)=(£.M£)>0, 0
Proposition 1: If Sis nonvanishing, them is either N o
positive definite, positive semidefinite, or indefinite. or from W™ (t) to W (t) if
This proposition will follow from a result in Sec. 1lIB d
(cf. the discussion after Proposition. 2 —C(& — (& Y
§iCE (.D=(& Mg <0, ®)
Trajectories are instantaneously tangent to the boundaries of
I1l. LOCAL FLOW GEOMETRY NEAR A FLUID the above sectors whenever
TRAJECTORY
. . d
A. Linearized flow a(;(gi(t)'t)=<§i,|\/|§i>=o_ 9)

Let x(t) be a trajectory generated by the velocity field
v(x,t). The linearized velocity field along(t) can be writ- By incompressibility, the possible sign combinations of

ten as (E",ME") and(& ,M &) are limited: only one of them can
. be nonpositive at a time, as we stated more formally in
§=AS, ®  proposition 1.

whereA(t) = Vv(x(t),t), and£ is a two-dimensional vector. The observations made in this section imply that the lo-

If S#0 at some timd, then the zero strain set defined(R) cal instantaneous flow geometry near g0 solution of(6)
divides the phase plane @) into four quadrants, as shown falls in one of the four categories shown in Fig. 2. Note that
in Fig. 1. Inside the regions formed by two facing quadrantsthese pictures show the behavior of particles in a frame that
the quadratic form, is co-rotating with£* (t) and & (t) (whenever these vectors
are nonzerp The indexing ofé* (t) and & (t) has no sig-
C(&0)=(&Sx(1).1)§), nificance and hence can be interchanged.
assumes negative values, whereas in the remaining two Despite the fact that we have information about the in-
guadrants it takes positive values. By), this means that stantaneous velocity field geometry from E¢g)—(9), one
vectors in the former quadrants shrink instantaneously, whileannot immediately guess the actual stability type of the un-
vectors in the latter two quadrants expand. Catenote the derlying trajectoryx(t) in cases@ and(c), since the exact
unit circle of the&-plane, and let ~(t) and¥ *(t) denote  solutions of(6) are not available. However, if the trajectory
the two closed sectorial regions insidehat are bounded by stays in regions wher8=0 [Fig. 2(d)] or whereM is posi-
the linesé~ and£* (see Fig. L By the above discussion, at tive semidefinitd Fig. 2(b)] over aperiod of time, the exact
time t solutions of(6) penetrate intol ~(t) and leavel *(t) linearized dynamics can be explicitly calculated.
along the perimeter of the unit circle. In case(d), a direct integration of6) yields the solution
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To interpret the above definition, we first note that
v(X,t) —Vv(Xg,t) is the relative velocity of the fluid particle at
x in the frame co-moving witkx(t), the trajectory currently
atX,. Thus, without the=? normalizing factor, the integral in
(11) gives the relative flux into the ball bounded 5y(x).
This quantity is then normalized bsf, a factor proportional
to the area of thees-circle. Accordingly, the dimension of
(Xp,t) is[1/s]. Sinceg is defined at any point of the physi-
cal space, from now on we shall omit the O subscript from its
spatial argument.

It turns out that the local flux is directly related to the
eigenvalues 08(x,t). Moreover, it can be written as the sum
of two frame-independent quantities that will be very useful
later.

Proposition 2:

(i) We have

P61 =2[S(x1)].
FIG. 2. Instantaneous linearized flow geometry nga) for the four basic "
cases:(@) Saddle-type flow, i.e.{&",M£)>0 and (£ ,M& )>0. (b) (ii) Assume tha§(x,t) #0. Then
_Shear;type ﬂow, i.egg*.l\flg*)?o and(g’,M{FO_. (c)_EIIipiic rotation, o(xt)= (p+(x,t) o (x1),
i.e.,(§"\M&)>0 and(& ,M& )<0. (d) Pure rotation, i.e.5=0.

© @

where
. L& ME)
t t Ay (12
cosf w(7)dr —sinf w(7)dr IS
&t)= 0 ‘o &, This proposition is proved in Sec. 1 of the Appendix.
sin ftw(T) dr COSftw(T) dr Note that by statemerif) the local flux is simply a scalar
to to multiple of the norm of the rate-of-strain tensor.

From the proof of Proposition 2 one can see the physical
meaning ofe™: they give thelnormalized instantaneous net
flux through the appropriate componéfit of the zero strain
set. They are positive for fluxes from the sectior (t) into

where = w(7) denote the off-diagonal elements &f(t).
This reveals an elliptic stability type fq6) over any finite
time interval. In caséb), one can pass to a frame co-rotating

. . _ . _
with the vectors§™ and & . Denoting the new coordinates W (t). Statementii) implies that eitheks™ or ¢~ must be

by (X+’X. ). respectively, and using the facts thettx- non-negative since is non-negative by definition. Thus ei-
=0 andx ™ |,+-¢<0, we can rewritg6) in the new basis as ther (£",M&") or (£ ,M&) must be non-negative, which
X~ 0 —2(t)\[x" proves Proposition 1. As we shall see later, the fluxés

( ) :( )( ) will have a fundamental role in identifying the exact stability

i type of the linearized velocity fiel®).

v+

X 0o 0

X

which admits the solution
t IV. A MIXING-BASED PARTITION OF TWO-
X—(t)zxa_ng V2(r)dr, X () =xg . (100  DIMENSIONAL TURBULENCE
t

° We consider the velocity field(x,t) and seek to con-

Therefore, iq the priginal basis one obtains a parallel sheagy .t a partition of the physical space at a given tinireto
flow co-rotating with the set of zero straih regions that exhibit qualitatively different Lagrangian mixing
properties. Based on our discussion in Sec. I(EA Fig. 2
and Proposition 2, at any tinteve can uniquely partition the
Back to the full nonlinear velocity fielg(x,t), we want  physical space into the following three regions.

to introduce a quantity that characterizes the rate of local  Theelliptic region&(t): the set of points wherkl ,(x, t)
stirring near the trajectony(t). Assume that the trajectory is s indefiniteor S(x,t) vanishes.

B. Local flux

at the pointx, at timet. We first defineS.(x,) as the circle of The parabolic region P(t): the set of points where
radiuse centered at the poing, then define théocal fluxat 1, (x,t) is positive semidefinite.
Xp as The hyperbolic regionH(t): the set of points where
1 Mz(x,t) is positive definite.
@(Xo,t)=lim— |(v(x,t) =V(Xg,t))-n|ds, (12) For a fixed time interval, we then define the elliptic,

€ 0£€7 5L parabolic, and hyperbolic se&l), P(1), andH(l) as do-

where n denotes the inward unit normal at any point of mains in space—time that are spanned by the above time-
S.(Xg). Note thate(xg,t)=0 by definition. dependent regions over the time interval
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locity field v(x,t). In a turbulent flow most material lines
keep changing their stability type: for some time they might
attract or repel particles, while at other times they may have
a neutral stability type. In what follows we seek to find ma-
terial lines that display the same stability type ovepaten-
tially short but fixed time interval =[tq,t;] with t;>t,.

We call a material lingepellingoverl if all infinitesimal
perturbations transverse to it strictly increase throughdgit
A material line is said to battractingover| if all infinitesi-
FIG. 3. A sketch of the elliptic, parabolic, and hyperbolic sets in space-mal perturbations transverse to it strictly decrease throughout
time. I. We call a material linehyperbolicover | if it is either
attracting or repelling ovet. We will define two further
classes of nonhyperbolic material lingslliptic and para-

& ={(xtlxe&t)tel}, bolic) after we list our main theorems on hyperbolicity.

P ={(x,t)|xeP(t),tel}, Note thqt_the Lagrangian r_10tio_ns of hyperbolicity or
nonhyperbolicity over a whole time interval are fundamen-

H()={(x,t)[xe H(t),tel}. tally different from their instantaneous Eulerian counterparts.

In a general two-dimensional flow the elliptic set is typi- Lagrangian hyperbolicity may remain completely hidden in
cally a union of tubes, the parabolic set is the union of thdhstantaneous Eulerian snapshots of the velocity fisk,

cylinders bounding these tubes, and the hyperbolic set is th@9-» the examples in Sec. VIOur main results below ex-
region outside the tubesee Fig. 3 plore the relationship between frame-independent Eulerian

For brevity, we shall refer to the above partition of the features _o_bserved over an interval of time and Lagrangian
physical space as tH&PH partition, with the acronym stand- nyperbolicity. . B _
ing for Elliptic—Parabolic—Hyperbolic. As opposed to instan- 1heorem 1 (Sufficient condition for Lagrangian hy-
taneous Eulerian partitions of turbulent flows that have beeRe€rbolicity): Suppose that a trajectory(t) does not leave
suggested previouslcf. Sec. \J, the quantities used in the t.he setH(l). Thenx(t) is contained in a hyperbolic material
EPH partition will allow us to deduce Lagrangian features ofline over I.

fluid trajectories in a mathematically rigorous fashion. The proof of the above statement turns out to be quite

technical. One needs to employ a finite-time Lyapunov-
A. Frame independence of the EPH partition and the function argument, combined with a lesser known topologi-
local flux cal technique, the Wasewsky principle. The proof also relies

heavily on recently proven finite-time invariant manifold re-

An important feature of the EPH partition is that it is sults from HalleR? Details can be found in Sec. 3 of the
frame-independenbbjective, i.e., remains unchanged under Appendix

time-dependent transformations of the form We stress that the above criterion for finite-time hyper-

x=Q(t)y+a(t), (13 bolicity is only sufficient. It may very well happen that hy-
perbolic material lines exist in the elliptic regidf(t) (cf.
Example 3 in Sec. VI The result below describes necessary
roperties of hyperbolic material lines that “stray” out of the
yperbolic regiorH(l). To state this result, we define

wherey denotes the new spatial variabl€3(t) is a proper
orthogonal tensor, ana(t) is a smooth function of time. We
show this, along with the frame independence of the Iocaﬁ
flux and ¢, in Sec. 2 of the Appendix.

We recall that frame independence is a stronger invari-
ance property than Galilean invariance, which would only

require the partition to remain unchanged for time-npqte thate, is positive in the hyperbolic region, zero in the
independen@ and linear-in-timea(t). As a consequence of parapolic region, and negative in the elliptic region.
full frame independence, the EPH partition will remain un- Theorem 2 (Necessary condition for Lagrangian hy-

c_hanged even if one transforms the 'veloc'ity fielﬁo_m the perbolicity): Suppose that a trajecto(t) is contained in a
fixed “lab frame” to a frame co-moving with the eigenvec- hyperbolic material line over I. Then

tors of S or other distinguished directions along a trajectory ~ (i) x(t) can only intersectP(l) at isolated time in-
X(t). Previous attempts to capture Lagrangian hyperbolicitysiances.

did not have this feature and hence gave different results in (i) If 1. denotes a time interval that the trajectory
different coordinate systenisf. Sec. V). spends irg(1), then

(PO(th) = min(QD+(X,t),Q07(X,t)) .

B. EPH partition and Lagrangian particle dynamics

a
In order to illuminate the significance of the EPH parti- J.J‘PO(X(t)’t)'dKE'

tion for Lagrangian mixing, we first need to fix some defini-

tions about material structures in two-dimensional fluid  The proof of this result can be found in Sec. 4 of the
flows. In the present context, material line is a smooth Appendix. Motivated by Theorem 2, we defiediptic ma-
time-dependent curve of fluid particles advected by the veterial linesover| as nonhyperbolic material lines that either
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stay in&(1) or stay in regions of zero strain ovefcf. Fig. attracting material line
2(d)]. Our next theorem is concerned with the existence of
such material lines.

Theorem 3 (Sufficient condition for Lagrangian ellip-
ticity ): Suppose that a trajectory(t) is contained in the set
&(1) and

aa
[ leatct vja=7. (14
1li terial li
Thenx(t) is contained in an elliptic material line over |I. reperting materiaz fne
The proof of this theorem can be found in Sec. 5 of the t

App\?\?edz(é” a material Iineparabolic over| if S(t) is non- FIG. 4. Attfacting anq 'repelling material Iine(é_initg—time unstable. and

vanishing along it and all infinitesimal perturbations trans_;;?lb)le manifoldscontaining a trajectorx(t) that lies in the hyperbolic set

verse to it stay constant in length throughout the intefval '

The requirement of nonvanishing strain is meant to exclude

elliptic material lines that simply rotate without any shear,Let s(x,t)=0 denote the largest eigenvalue $(x,t), and

like those shown in Fig. @). One can think of parabolic let o(x,t)=(VXu(x,t)), denote the-component of the vor-

material lines as those imbedded in a shear layer, displayinéicity. Furthermore, letc(x,t) denote the largest eigenvalue

the neutral stability type. Based on our discussion at the enlf P(x,t), and leto(x,t)=0 andy(x,t)=0 denote the larg-

of Sec. Il A, the only case in which this can happen is when€st eigenvalues oF*S(x,t) and G(x,t), respectively. We

M, remains positive semidefinite over a period of time.can then prove the following result.

Therefore, we see the following result. Theorem 5 (Sufficient dynamic condition for La-
Theorem 4 (Sufficient and necessary condition for —grangian hyperbolicity): Suppose that over a time interval |

Lagrangian parabolicity): A trajectoryx(t) is contained in @ fluid trajectoryx(t) stays in the time-dependent physical

a parabolic material line over | if and only if it does not region satisfying

leave the sef(l). |2

(S— 7) >—k+vo+y. (16)

C. A dynamic condition for Lagrangian hyperbolicity p

Our discussion of Lagrangian hyperbolicity and nonhy_Thenx(t) is contained in a hyperbolic material line over I.

perbolicity has been purely kinematic: no use of the equai—nS \Qﬁigzogf tH:eIS trr;i?rser:g vilns tSheaCt. fhggrtri 'gpizegd;ﬁ' ﬁf[ln
tions governing the evolution of the velocity field has been P P gnhtly

made. However, it would undoubtedly be of interest to inter—We‘.ak.er form of Theorem 1:. its main cqndmon may not be
satisfied for some hyperbolic material lines that would nor-

pret th? criteria of Sec. IVB n dyna_mlc terms that mvone mally be identified by Theorem 1. At the same time, it does
guantities from the governing equations. Here we consider : . . .

: . . : offer a simple frame-independent relation between important
the simplest case when the governing equations are just tfl(e

two-dimensional incompressible Navier—Stokes equations.mematlc and dynamic quantities that should be important in

In that setting, we are able to obtain a mixed kinematic-SpeC'f'C problems. For instance, in many applications, such

d . g o . S as active flow control, one needs to go beyond identifying
ynamic sufficient condition for the existence of finite-time- L aaranaian structures. in a aiven velogity field: one actuall
hyperbolic material lines. grang g y : y

The key idea is to describe the hyperbolic regiél) in aims to create, destroy, or shape such structures by altering

dynamical terms and then reformulate Theorem 1 in thesggr:a;gg\fsa::ir;i Ofct:r? k\)/eezlzzltt'\ézgfd 'ﬁ‘chor?\lre]% tr%t?gnt?fet%-e
new terms. To this end, let us consider the Navier—StokeE . » MiXing . L 9 9
equation ulerian condition(16) is satisfied on a large subset of the

region for extended times. We shall not pursue this approach
oV 1 here but note that Theorem 1 should provide a good starting
—+(v-V)v=—=Vp+rVau+f, point
ot p ) . . L
In the following we discuss how our criteria on Lagrang-
wherep denotes the densitp is the pressurey is the kine-  ijan coherent structures can be used to isolate distinguished
matic viscosity, angf contains divergence-free body forces. material structures in space—time that have a major impact
We recall that for the Navier—Stokes equation, the materiabn particle mixing. A class of theskagrangian coherent
derivative of the rate of strain tensor satisfies the equation structures (LCSill act as barriers to mixing, while others
1 will act as enhancers of mixing.
S=—(S+0%) - —P+vV2S+G, (15) _ _
p D. Hyperbolic LCS: Stretch and fold lines
where Q=% Vv—VWv') is the vorticity tensor, Pi Theorem 1 guarantees that all trajectories that remain in
= azp/(axiaxj) denotes the pressure Hessian, & 3(Vf  the hyperbolic set{(l) are contained in attracting and repel-
+ Vi) is the symmetric part of the body force gradiéht. ling material lines over the time interval The attracting
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material lines act as finite-time unstable manifolds for the
trajectory, while the repelling ones act as finite-time stable
manifolds(see Fig. 4 As discussed in Halléf such mani-
folds are not unique over finite time intervals: in general,
there will be infinitely many material lines containimxgt),
all behaving as stable and unstable manifolds<{aoy. How-
ever, the distance between two possible finite-time stable or
unstable manifolds tends to zero exponentially ndaj as
the length of the time interval increases. Therefore, the
stable and unstable manifolds of trajectories spending longer
times in H become well-defined up to exponentially small
uncertainties. FIG. 5. Mixing barrier formed by a closed, material line that stays in the
Trajectories lying inside the hyperbolic s&(1) will not  elliptic set for a long enough time.
be isolated: they will typically form open sets in space—time.
Accordingly, there will beinfinitely manyrepelling and at-
tracting material linegfinite-time invariant manifoldsin the ~ merically, both scalar fields are locally maximized diyetch
hyperbolic region. Out of this infinitely many, the most in- lines in forward time calculationandfold lines in backward
fluential ones can be defined as hyperbolic Lagrangian cdime calculationsThe reason is that particles near stretching
herent structures. One can quantify the influence of a hypefines spend longer time in hyperbolic regions that those near
bolic material line on neighboring particles in at least threefolding lines. As a simple analogy, one can picture a saddle
different ways, as we describe below. The first two of thesdroint: along its stable manifold, i.e., a stretch line, particles
definitions have already been suggested in relation with eagPend a long time before they leave the vicinity of the saddle
lier frame-dependent approaches to Lagrangian hyperbolic@/ong its unstable manifold, a fold line.
ity, and here we will only adjust them to our current setting. A third way to localize stretch and fold lines turns out to
Stretch linescan be defined as repelling material lines e plotting the following time-dependent field:

vortex core

that stay in7{ for locally the longest or shortest time in the IS(x(t),)], if x(t)eH(t),
flow. Similarly, fold linescan be defined as attracting mate- —

o . m(tto,Xo)

rial lines that stay inH for locally the longest or shortest 0, it Xx(t) & H(t).

time in the flow. In practical terms, one identifies such lines . ) i
att=t, as local extremum curves of the hyperbolicity time Note thatu is nothing else but the instantaneous value of the
field (cf. Haller and Yuaf?) local flux for instantaneously hyperbolic particles, while it is

zero for instantaneously elliptic particles. As we show in Sec.
VII, this field is particularly effective in reconstructing
7h(to.Xo) = {teﬂx(t)eH(t)}dt' (17 stretching and folding lines from short-time velocity data.
The lines will appear as locahinimizersof this field as
Alternatively, stretch and fold lines can be defined asparticles very close to stretching lines tend to accumulate
material lines along which the time integral of the local flux near folding lines and then spiral into an elliptic region of a
is maximal or minimal. By(ii) of Theorem 1, one can locate nearby eddy(see Fig. 4 Since this scenario is typical in
hyperbolic LCS att=t, by looking for local extremum two-dimensional turbulencey(t,x,) appears to be a fast-

curves of the scalar field, converging indicator of long-lived stretching lines in forward
time and folding lines in backward time.
o(tg,Xo) = |S(x(t),t)|dt. (18 We finally note that stretching and folding lines will gen-
{teZx(t) e H(D)} erally have finite thickness as they can only be expected to

fbe unique curves in infinite-time velocity fields. However,
just as attracting or repelling material lines, the more time
they spend in the hyperbolic region the thinner they become.

In the context of a possible improvement to the result o
Haller and Yuarf? this scalar field was proposed by Lapeyre
et al?® as a relevant indicator of hyperbolic Lagrangian co-
herent structures. We note that if the largest strain eigenve
tor along x(t) were tangent to the folding line containing
x(t), then o(ty,Xg)/t would coincide with the finite-time A consequence of Theorem 3 is the following: while
Lyapunov exponent field calculated for the initial condition trajectories in a finite-time hyperbolic material line can enter
Xo. However, such a special orientation of the strain eigenthe elliptic set&(1), they can only stay there for short times.
vectors occurs with probability zero due to the presence ofWhat “short time” means locally in the flow is determined
shear and rotation in the flogsee, e.g., Pierrehumbert and by the inequality(14). The length of the time interval for
Yang'®). which the inequality turns into an equality can be considered
The difference between the two scalar fields above isan upper estimate foF* /4, whereT* denotes the local eddy
that =, will be sensitive to all stretch and fold lines regard- turnover time.
less of their strength of hyperbolicity, while will effec- By our results, elliptic material lines do not experience
tively capture the strongest such structures, i.e., the ones thekponential stretching or folding over the time interval
correspond to high levels of strain. When implemented nuPicking the maximalsmooth closed material line that stays

(E. Elliptic LCS: Vortex cores
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in a given component of the elliptic sé€fl), we therefore
obtain a barrier to mixing. In the extended phase space of
(x,t), this barrier can be pictured as an invariant cylinder
(see Fig. 5. While thet=const cross section of such a cyl-
inder may deform, its area is preserved by incompressibility.
The existence of these cylinders explains the old observation
that vortices in two-dimensional turbulence admit impen-
etrable vortex coreésee, e.g., Elhmdi et al®).

The above cylinders are the generalizations of KAM tori
from time-periodic velocity fields. Note that the existence of t
invariant cylinders in an arbltrgry _Ve|0CIty field is a mv'?' FIG. 6. Schematic view of material lines forming a shear jet in space—time.
result:any smooth closed material line generates an invariant
cylinder in the extended phase space. What is special about
time-periodic velocity fields is that certain closed material
curves give rise to cylinders that are actugfigriodic in V. RELATIONSHIP TO EULERIAN PARTITIONS OF 2-D
time such time-periodic cylinders form the well-known TURBULENCE

KAM tori when time is viewed as a periodic variable. o .
L . . Here we compare the EPH partition to two instantaneous
In a velocity field with general time dependence one

cannot expect to find periodic-in-time cylinders in the eX_partitions of two-dimensional turbulence that have been sug-

. : \geested and used in the literature. Both partitions are essen-
tended phase space. A randomly picked closed material cur . o )
tially based on short-time approximations of particle dynam-

will generate a cylinder, but its cross section will typically ics and assume slowlv varving properties of the veloci
undergo exponential stretching and folding. The cylinders w% Id y ying prop y
identified above do not stretch intensely, and hence keep par-

ticles confined to their interiors, the vortex cores. A. The Okubo—Weiss partition

In practical terms, elliptic LCS at=t, can be defined as

P(I) shear jet

open sets on which thellipticity time field The Okubo—Weiss partition identifies elliptic regions for
the velocity fieldv(x,t) at timet as spatial domains satisfy-

reltoXo) = f dt, ing de(Vv(x,t))>0 (see Okub® and Weis®). Hyperbolic

{te Zix(t) e &(t)} regions are defined as those where(%efx,t))<0. Using

the positive eigenvalue of S and the vorticityw=|VXv|,

the above criterion can be phraseds!s- w?/4<0 for the

elliptic region, ands?>— w?/4>0 for the hyperbolic region.

This criterion is essentially an attempt to decide whether the
=0 solution of the linearized equatiof®) is hyperbolic
i.e., of saddle typeor elliptic (i.e., of center type The

is locally maximal. The scalar fieldq(ty,Xg) can be com-
puted and then interpolated from a grid of initial conditions
for any fixed initial timex,.

It remains to note that in very special velocity fields
some elliptic material lines can become unstable due to res

nances. Such a situation is atypical in turbulent flows: 'tOkubo—Weiss criterion would give the exact answer to this

would require sustained near-periodic and near-resonant ti”lﬁlestion if A(t) = Vv(x(1),t) were a time-independent ma-
dependence around trajectories forming the material “neﬁrix: in that case the sign' of de) could indeed be used to

However, even if such flow conditions arise, the resultingg, 4o stability type ofé=0.° However,A(t) has explicit
instability genencally remains contgu}é‘a.For complete- time dependence even for steady flows, in which case the
ness, we discuss a relate_:d exam(@eiginally proposed by eigenvalues oA(t), in general, do not have any meaning for
Pierrehumbert and YaA in Sec. VI. the stability type ofx(t) (see, e.g., Verhul&t or Hale** for
counterexamples and further referenc&ne still hopes that
if A(t) is slowly varying then its eigenvalues remain relevant
The third kind of basic Lagrangian coherent structure weindicators of stability. This was found to be the case near
can identify from our theorems is ghear jet:a set of fluid  stagnation points in numerical simulations by Basdevant and
trajectories that travel in the parabolic regiBi) over some  Philipovitch?
time intervall. Material lines in this set may “slide” on each Recently, Haller and Yu&n gave a rigorous bound for
other, but they do not repel or attract fluid particles at athe speed of rotation of the eigenvectors Aft) below
noticeable rate over finite time intervals. While the materialwhich def{Vv(x,t))<0 indeed implies finite-time hyperbo-
lines forming the jet are locally parallel, the jet as a wholelicity for x(t). This “a— B criterion ” gives a Galilean in-
may rotate(see Fig. 6. As an example one can think of a variant but frame-dependent partition of 2-D turbulence into
two-dimensional, inviscid channel flow where the channelregions that are known to be exactly hyperbolic and regions
rotates within thex—y plane. As we noted earlier, the occur- whose stability type remains undecided. A three-dimensional
rence of such a structure in a general turbulent flow is unextension of this result was given in HalféiMore recently,
likely since there is na priori reason why the strain accel- Lapeyreet al?® proposed that applying the— 3 criterion in
eration tensor would admit a single zero eigenvalue over a strain basis would give an improved sufficient condition for
whole region. A notable exception would be a laminar sheafinite-time hyperbolicity. However, the frame dependence of
flow near a boundary with no-flow boundary condition. the a— B criterion combined with the numerical errors due

F. Parabolic LCS: Shear jets
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to the calculatiorVv in a rotating frame actually gives simi-
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tion can be found whenever Al ,,, has real eigenvalues,

lar or somewhat weaker results in a strain basis for most flowhich amounts to the requirement that def/,..)<O.

fields (see Hallef).

B. The Okubo—Weiss patrtition in strain basis

A more refined way to study the exact stability type of
the origin in(6) is to factor out the part of the time depen-
dence ofA(t) that comes from the rotation of the eigenvec-
tors of its symmetric part, the rate-of-strain tensor. This ap
proach was first pursued by Dresselhaus and Tébaho
derive the analog of Eq(6) in the strain basigsee also
Dritschelet al*® for a similar approach in the framework of
a specific problem In terms of our notation, the resulting
equation can be written as

.gz Astrair( t) f,
with
Asrair= Q"TAQ—-QTQ=3+(Q"2Q—-Q'Q). (20)

Here3,(t) is a diagonal matrix containing the eigenvalues of
S(t), Q(t) denotes the skew-symmetric part 8ft), and

19

Since

de( —A!

strai

T
strai

) = delAgyrain) = de(Agyain)

a formal alignment direction exists precisely whe2®) is
satisfied. Lapeyret al. call the region of the flow obeying
(21) and (22) “effective rotation dominated,” and “strain
dominated,” respectively, and refer to the boundary between

the two regions (def\ g, =0) as “strain-effective rotation
compensated” region. In the recent work of Lapegteal®
the significance of this partition for the alignment of diffu-
sive tracer gradients is explored.

Inferring actual Lagrangian stability or tracer gradient
alignment from the partitioi21)—(22) is not a rigorous pro-
cedure: it is based on a somewhat vague “frozen-time” as-
sumption. Even if writingAg.i{ €t) were correct for some
small parameteg, the lack of periodic time dependence for
Asirain Would prevent one from applying classic averaging
techniques to justify a passage to the adiabditazen-time
limit. Nevertheless(21)—(22) turn out to be formally related
to the EPH partition that we derived in the previous section.

Q(t) is a proper orthogonal matrix containing the normalized|, particular, the instantaneous elliptic regiét) coincides

eigenvectors o§(t). Taking this approach further, Tabor and \y;ith the set defined as detA

Klapper?
(19) by applying the Okubo—Weiss criterion to it. More con-
cretely, using the notatiort (w— w")/4 for the off-diagonal
terms of the skew-symmetric part 8., they distinguish
between “local rotation domination” characterized by

?—(w—w')?°<0=de( Ay >0, (21
and “local strain domination” characterized by
?—(w—w')?>0=de( Agqn) <O. (22

Of course, this criterion is still formal sincRg,i, remains

T
strai

{1))>0, and the region

propose to assess the instantaneous stability Of-t(t) coincides with the set defined as Gep\ltrair(t))<0-

This can be seen from Fig. 2: the geometry depicted in Fig.
2(a) implies that origin is an instantaneous saddle point for
the linearized equatiof®) in strain basis, while the geometry
of Fig. 2(b) is only possible if the origin is an instantaneous
center for the linearized flow. The difference between our
approach and formal derivations @1)—(22) is that ours
leads to rigorous analytic criteria for Lagrangian hyperbolic-
ity or nonhyperbolicity withoutassuming adiabatic features
or passage to a different basis.

time dependent and hence its eigenvalues cannot be used

directly to argue about the stability of(t) (see, however,
Dresselhaus and Talf8rfor a few simple cases when they
canbe).

The above partition will only be relevant to the actual
stability of fluid trajectories if one assumes ti#ag,,;{(t), the
velocity gradient expressed in the strain basis, is slowl
varying in some sens¥. This view is taken by Lapeyre
et al*” in an equivalent derivation of the same partiticee
also Kleinet al*¥). This latter derivation aims to find align-
ment directions for tracer gradients and vorticity in two
dimensional turbulence. Along a trajectory the gradient of
nondiffusive passive tracev,q(x(t),t), solves the linear dif-

ferential equationy=—AT(t). Lapeyre et al. transform

this equation to the strain basis then consider the “adiabatiﬁ

limit,” i.e., ignore the time dependence of the transformed
coefficient matrix— Al ,,{t). They then proceed to find the
asymptotic direction of any initial tracer gradient by formally
solving the resulting constant-coefficient ODE. However,
one can actually predict the result without solving the ODE:
an adiabatic alignment direction will exist preciselyzt0

is a saddle point for the “frozen-time” ODE. In that case any
initial tracer gradient will approach the unstable manifold of
the saddle exponentially fast. Thus a formal alignment direc

VI. EXAMPLES

The examples below show the use of our theorems on
hyperbolic and nonhyperbolic material surfaces for linear
time-dependent velocity fields. In Examples 1-3 we selected

>yelocity fields that are exactly solvable and hence the predic-

tions of Theorems 2—4 can be verified. Even these simple
examples, however, highlight the difference between instan-
taneous Eulerian predictions and actual Lagrangian hyperbo-
licity. Example 4 is a time-dependent velocity field proposed

6py Pierrehumbert and Yahtfor which explicit solutions are

not known.

Example 1The first example below shows how the EPH
artition can rigorously identify Lagrangian hyperbolic be-
avior when the Okubo—Weiss criterion or the- 8 crite-
rion of Haller and Yuaf? fail to indicate hyperbolicity.

Consider the incompressible velocity field(x,t)
=A(t)x with

w+ COS 2wt
—sin2wt |°

sin 2wt
— w+C0S 2wt

A(t)

This is just the velocity field of a uniform strain fiel
=y, y=x transformed to a frame that is uniformly rotating
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with angular velocityw. As a result, we know that the origin
x=0 is finite-time hyperbolic on any finite time interval. A(t)=(
However, applying the Okubo—Weiss principle or its rig-
orous Lagrangian version from Haller and Yufdnye cannot ~ where the functiona(t) is to be specified later. One can
recover the hyperbolicity of the origin if dei0=w?-~1 directly integrate the ODE=Vv(x,t) to obtain the solution
>0, i.e., the speed of the rotation for the frame reach&s
=1
The explicit evaluation of the Okubo—Weiss criterion in X(t)=
strain basis is computational: it requires the calculation of the 0
derivatives of the eigenvectors of the symmetric part of
A(t). In contrast, the strain acceleration tensor is easilywhere x, is the initial position of the trajectoryx(t)

-1 2a(t))
0 1)

t
e (=t Zf e’ log(7r)dr
tO Xo,

et—to

found to be =(x(t),y(t))" at time t,. The x=0 trajectory is clearly
finite-time hyperbolic for all times and is contained in the
) 2 0 : o . ~ .
M =S+ 28A=< ) repelling material line(stable manifolgl y=0. Below will
0 2 show how different approaches to detecting Lagrangian hy-

SinceM is positive definite on the whole plane, its restriction perbolicity bear on this example.

M to the zero strain seZ must also be positive definite, __qpplylng” ihe. ()tkqbo—We!sst crtlterlon ?'V(e)i gﬁtt\)/v .
thusx=0 lies in the hyperbolic set((l) for any time inter- _ _— €., &1 FAJECIONES are instantaneously DKUbO—WEISS

val I. Then Theorem 1 guarantees the finite-time hyperbolic-hr?/ p(?‘Tth))llfC. To "cc?nflrm a}ctual Lagrar;]glan hyperpoI|C|t3f/ n
ity of the origin over any finite time interval. ':_'e” a c;aye r?[.,'qr‘;:."us y, We use t ey—f'ﬁ. anerlorr\] 0
Example 2:The following example shows that the posi- aller and vuart. Is criterion ensures finite-time hyper-

tive definiteness oM, cannot be replaced by the positive bolicity on a finite-time interval if

definiteness oM in the definition of the hyperbolic region N> (24 \/5),8, (23)
H(t).
Let us consider a linear velocity field of the form WhereXy;, denotes the minimum of the positive eigenvalue
v(x,t)=A(t)x with of A(t) overZ, « denotes the minimum of the norm of the
determinant of a matrixT(t) containing the normalized
At) = ( M) 0 ) eigenvectors oA(t) overZ, andB denotes the maximum of
0 —xb)’ the normT(t) overZ. One calculates these quantities to find

that (23) takes the form

where \(t)>0 for all t. Direct integration shows that the
origin is linearly unstable, and hence it is finite-time hyper- 1 (2+2) \/[é(a2+1)—a2]2+a2
bolic on any finite time interval. The strain acceleration ten-  min >max
sor is of the form terVa®+1l el J(@2+1)3
: (24)
A+2)\2 0 ) - i
= ) ) Therefore, ifa(t) varies slowly enough to obey the above
0 —N+2A2 bound on its derivative, finite-time hyperbolicity is guaran-

teed by thew— g criterion.

To evaluate the Okubo—Weiss criterion in strain basis,
we would have to evaluate the formuf20) to determine the
sign of det(Agai{t)). This calculation is a tedious exercise
and will be omitted here. Instead, the two components of the
zero strain set and the strain acceleration tehsor(3) and

Note thatM will only be a positive definite matrix fofA|
<2\?, i.e., if A changes slowly enough. However, Theorem
1 only requiresM to be positive definite on the zero s&bf
(&,S¢) for the origin to lie in an attractingas well as on a
repelling material line. In this example we have

. 1 (4)] are easily found to be
&= 1] :
+ . 1 2 a—2a.
+_ . M=|. .
and hence g —a+a’+1 a—2a 4a’+2
Mz(&=(EME[=4\% &>, This in turn gives

Therefore,M; is positive definite and Theorem 1 correctly N o —— : 2
predicts the finite-time hyperbolicity of the origin for any (7. M&7)=2+(a+Va'+1)[2(2a—a)+2(2a"+1)

smooth function (t) > 0. X (a++a2+1)],
Example 3:This example shows how Theorem 3 can be

used to exclude finite-time Lagrangian ellipticity even if the (& M£7)=2+(a— Ja?+1)[2(2a—a)+2(2a%+1)
formal application of the Okubo—Weiss criterion in strain

basis incorrectly suggests ellipticitpr “effective rotation X(a—va*+1)].
domination”). . . L
According to our discussion in Sec. VB,
Consider the incompressible velocity field(x,t) "9 urdiscussion |
= A(t)x with detAgrain > 0= (E" MENE ME)<0, (25
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FIG. 7. The product{¢",M£ W& ,ME ) as a function of time for

FIG. 8. The local fluxp and its two components™ and¢ ™~ for Example 3.
Example 3.

. L - for all trajectories, which impliesf,i| o(X(t),t)|< /2.
delAgyai) <0=(§7,M&")(§" . M&)>0. Therefore, trajectories always leave the elliptic regifi)

We now seleca(t) = (sin 5a)2 which violates the finite- well before finite-time eIIipticity _W(_)u_ld follow from Theo-
time hyperbolicity condition obtained if24). For this choice €M 3- Thus true Lagrangian ellipticity cannot be concluded
of a(t), we show(&",M& ) (& ,M£&) as a function of time over the intervald; and |, in spite of the fact th'at !t is
over one period ofa(t) in Fig. 7. Note that(£",M&") (mcprrectly suggested by the Okubo—Weiss criterion in
X(& ,M&) is predominantly negative apart from barely Strain basis. _ _ _
visible short positive intervals. B{21)—(22) and (25), the Example_ 4:As our f_mal_example, we consu_:ler a fime-
Okubo—Weiss criterion in the strain basis predicts predomige@emj‘f’nEa linear velocity field proposed by Pierrehumbert
nant ellipticity near the trajectory=0. In a fully numerical ~ &"d Yang.® This velocity field will illustrate the power of
calculation of the criterion one would likely discount the OUr results on a problem in which explicit solutions for fluid
short and weak Okubo—Weiss hyperbolic intervals as nulf@iectories are not available. o
merical errors. This is an example of how the original  Consider the incompressible velocity fielat(x,t)
Okubo—Weiss criterion might accidentally perform much ~A()x with
better in the lab frame than in the strain basis. This further a(t) 1
underlines the fact that both versions of the criterion are  A(t)= )
based on nonrigorous calculations and hence can produce -1 —a()

misleading results. with some smooth functioa(t). If a(t) is not constant in

To evaluate the mathematically exact results we hav@me the nonzero solutions of this system are not known.
derived in this paper, we first note that Theorem 1 immedi-gjnce detA(t)=1—a2(t), the Okubo—Weiss criterion pre-

ately guarantees finite-time hyperbolicity over the shortjjsts elliptic stability for the fixed poink=0 for |a(t)|<1,
negative intervals where trajectories travel?ift). For the 54 then hyperbolic stability type fda(t)|>1.

rest of the time, trajectories are travelling in the elliptic re- To obtain rigorous statements about Lagrangian hyper-
gion £(t), with the exception of the isolated times when they g jicity or nonhyperbolicity in this example, we first note
hit the parabolic regio(t) upon passing betweéri(t) and 5t

&(t). To avoid finite-time hyperbolicity, trajectories would

have to spend long enough timeséft) by Theorem 3. The a(t) 0
two intervals over which trajectories aredft) are given by S(t)= 0 —a())’
I,=[0.0040, 0.029% 1,=[0.0317, 0.062# a(t) + 2a%(t) 2a(t)
Figure_8 shows the graphs of the local flux componesits M(t)= 2a(t) —a(t)+2a2(t) '
and ¢, as well as that of the total local flux, over one
period ofa(t). We used high-precision numerical integration . 1
to obtain ()= 1)
f I (x(1),D)] +] ¢~ (x(1),)|dt=0.7528< 7, which give
|
1 (£ MENE ME)=16a%0[a%1) - 1].

J | " (x(1),t)|+ ]~ (x(1),t)|dt=0.815%K , Then our Theorem 1 guarantees finite-time hyperbolicity for
I2

the origin(and for all other trajectorigver a time interval
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l'if |a(t)|>1 for allt e I. Note that this is a highly nontrivial
result since the trajectories of this time-dependent velocity5
field are not known explicitly.

If a(t) is such that/a?(t)|<1 holds on a finite-time 4
interval I, then all trajectories are contained in the elliptic ,
region&(l). The two local flux components are given by

¢ ()=(a’a)/|al (26)

along all trajectories. Recall that Theorem 2 only allows theo
origin to be finite-time hyperbolic ovet if [,|@q(t)|dt 0
<r/2, or equivalently,

f1—|a(t)|dt<w/2. :
|
This last condition can be rewritten as

fl|a(t)|dt<|—77/2, (27) 2

so we obtain that the origifor any other trajectory of the
velocity field is automatically finite-time hyperbolic over o
time intervals that are shorter than2. However, no small
perturbation to the fixed point=0 can grow monotonically FiG. 9. Instantaneous contour plots of the potential vorticity showing robust
over longl intervals. A more precise estimate for the admis-(Eulerian coherent structures.

sible length of finite-time hyperbolicity intervals can be ob-

tained by evaluating the integral for a given choice of
a(lt) y evaluating integral (@7) g I map of stretching lines, folding lines, and regions of no mix-

ing can be extracted from the data set with high precision.

Using Theorem 3 and E@26), we also conclude that for ) . . - .
g ©6) We consider the quasigeostrophic vorticity equation,

|a?(t)| <1, all material lines are elliptic over time intervals
satisfying aq
- Tlal= -V, (28)
a(t)|dt<l—a/2.
Jll ®l T with hyperviscosityr,=5x10"’. The quasigeostrophic po-
tential vorticityq is defined ag|= V2y— y?y, with ¢(x,y,t)
denoting the nondimensionalized free surfasgeam func-
tion). The constanty is the scaled inverse of the Rosshy
deformation radius. Following Provenzaseal.,?® we select
v=10 to ensure the presence relatively robust coherent

. ) ; . structures. Equatiori28) is solved on the square domain
periods will be followed by periods of decay. Using the (0,27)%, with 128<128 resolution and with a random

method of averaging, Pierrehumbert and Yelrghowed that Gaussian distribution of vorticity, using the pseudo-spectral

it a(t) is periodic and small enough in norm, then the grOWthcode employed in Provenzad al?® After an initial start-up

periods may dominate on average and lead to an overall in-" . . .
stability of the origin. This occurs if the period @i(t) is period, robust Eulerian coherent structures emerge, as evi-

. . denced by the contour plots of shown in Fig. 9. For our
nearly commensurate with2 I.e., a resonance occurs be- analysis below we saved snapshots of the velocity field that
tweena(t) and the periodic orbits of the(t)=0 limit. This Y P y

: o .. wereAt=0.1 apart over the time intervd=[5,9]. We also
case gives an example of the resonant elliptic material lines L . . L
aved the position of particles released from a uniform initial

ment|one'd atthe eni of Sep. v E..The unbounded gr.owth 0Erid of 256x256. The Okubo—Weiss criterion and its La-
perturbations to th&=0 trajectory is the result of the inter-

lay between two degenerate features that do not occur iarangian version, thex—f criterion, were evaluated in
play 9 aller and Yuaf® for this simulation and will be omitted

general turbulent velocity fields. The first one is the pe”Od'Chere. Instead, we use the EPH partition and our theorems

time dependence of the velocity fiefdThe second one is from Sec. IV B to search for different Lagrangian coherent

the linear nature of/ that “locks” all trajectories in reso- . .
. ; : .. structures. In this open turbulent flow parabolic structures are
nance for all times. In contrast, generic nonlinear velocity

. : . . : nongeneric, thus our discussion will be limited to stretching
fields admit resonance regions that are localized in sfface. o
and folding lines and vortex cores.

As we noted in Sec. IV D, Lagrangian coherent struc-
tures can be defined as material lines that are locally the most
influential in mixing. This influence can be quantified in sev-

In this section we reconsider the numerical experiment®ral ways. We first plot the hyperbolicity time fietg(5,x,)
performed in Haller and Yu&n and show how a complete and the ellipticity time fieldrs(5o) in Fig. 10 based on a

By definition, elliptic material lines are contained in the
elliptic region &(1), i.e., the basic flow geometry around
them is rotational. Also by definition, they are not finite-time
hyperbolic overl: infinitesimal perturbations to them may
grow monotonically over subintervals of but the growth

VII. NUMERICAL EXPERIMENTS ON BAROTROPIC
TURBULENCE
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FIG. 10. (a) The hyperbolicity time fieldr,(5x,). (b) The ellipticity time field 74(5Xo) .

forward time calculation over the time interd,9]. Recall ~ shear jets. Our primary goal here was not to explore all pos-
that stretching lines are local maximizing lines in the firstsible structures, but illustrate the power of a frame-
plot, being the material lines that repel nearby fluid particlesndependent approach on a data set that had been studied
for locally the longest time in the flow. Vortex cores filled previously via other methods. Even in this somewhat simple
with elliptic material lines are local maximizing “patches”in data set the Eulerian elliptic regions identified from the
the second plot. Figure 11 shows the calculation of the fieldkubo—Weiss criterion or potential vorticity plotsf. Haller
a(5Xo) over the same time interval. As we noted earlier, theand Yuar®) differ significantly in size and shape from the
strongest stretching lines are also local maximizers of thigctual Lagrangian-elliptic regions we located here. As for the
field. Note, however, that weaker stretching lines are suphyperbolic LCS we found here, they remain completely hid-
pressed by this approach. Finally, we show the instantaneowten in instantaneous Eulerian calculatiojeé. Haller and
local flux plot u(t,5x,) for t=6.5 andt=7.5 in Fig. 12.  Yuarf®).
This technique converges very fast and displays all stretching
lines as local minimizing curves with great clarity. Note that
there is a local increase in the value wfbefore it drops to
its minimum, a feature that renders the minimizing curves  |n this paper we have derived a set of frame-independent
more visible. A backward time calculation of the same fieldcriteria to locate finite-time hyperbolic, elliptic, and para-
with t=4 andt=2.5 is shown in Fig. 13. Again, a very fast bolic material lines from general finite-time velocity data.
convergence to the folding linggocal minimizing curves  These material lines can in turn be used to identify Lagrang-
leads to great clarity and detail in these plots. ian coherent structures that have a key impact on finite-time
The sharp minimizing nature of stretching and folding advective mixing. We extracted these structures from simu-

lines also results in a loss of detalil for longer times, since theations of two-dimensional turbulence using different ways
thickness of the lines quickly falls below grid resolution.

Here we did not address this numerical issue and only cal-
culated the plots for intermediate times. This was possible
because of the fast convergence of this approach: in only &
few time steps the main hyperbolic LCS emerge and their
thickness decreases quickly. This “thinning” of hyperbolic *
LCS is consistent with the predictions of Poje and Hafler
who proved that the inherent nonuniqueness of finite-times
invariant manifolds decreases exponentially as their lifetime
increases. .
The stretching and folding lines in this simulation have
already been approximated in different ways in Refjal.,?®
Haller and Yuarf® and Halle*® However, none of these
methods produced the level of detail and clarity obtained
here, and they all needed longer times to converge. It appeart
that the theoretical framework we developed here capture:
the essence of these structures. o
We finally note that the numerical data set we have stud- °
ied here does not admit parabolic Lagrangian structures, i.e., FIG. 11. The scalar field (5 x,).

VIIl. CONCLUSIONS

2
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(b)

FIG. 12. (Color) The local flux fieldu(t,5x) for (a) t=6.5; (b) t=7.5.

of implementing our theorems. Other implementations of ourfolding lines that connect different mesoscale eddies. These
results are clearly possible and may lead to numerical imstructures are markedly different from the lobes and tangles
provements. found in chaotic advection, and their dominance suggests
In comparison with the earlier analysis of the velocity that the primary source of complexity in barotropic turbulent
field in Haller and Yuarf® the stretching and folding lines mixing is spatial, not temporal.
located via the techniques of the current paper are more co- If one wishes to locate stretching and folding lines from
herent and better resolved, and the vortex cores are noawvailable particle data, the direct Lyapunov exponent tech-
better identified and understood. In fact, out of all the diag-nique proposed in Halléf may be the most expedient tool to
nostic tools that have been proposed the Introduction, use. While this “infinitesimal dispersion” calculation con-
the scalar fieldw(t,xo) appears to produce the sharpest re-verges somewhat slowly and produces extra “ghost” struc-
sults in the shortest time on Lagrangian coherent structuresires of maximal shear, it is fairly easy to implement. At the
in 2-D turbulence. It reveals a stunning set of stretching angdame time, it is diagnostic in nature and says nothing about

I:'
1
L
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the features of the velocity field that give rise to Lagrangian
structures. It is to be contrasted with the dynamic hyperbo-
licity criterion (16) that gives a direct link between the time
history of important Eulerian quantities and Lagrangian mix-
ing. This may ultimately enable one to predict the types of
coherent structures that emerge in a particular solution of the
Navier—Stokes equation, and the amount of mixing they gen-
erate. Knowing the exact Eulerian signatures of intense La-
grangian mixing or lack thereof is also of central importance
in a number of applicationtsee Chatest al®Y).

Several further questions remain unanswered. One of
them is the possible role of the eigenvectorshbfin La-
grangian mixing. In a recent study Kle#t al*® observed a
statistical alignment of tracer gradients with the eigenvectors
of a tensor that is simply a scalar multiple df. Making use
of the framework we introduced here, one should be able to
study this question and find conditions under which the phe-
nomenon occurs. A further question would be how the result
we derived here could be extended to three-dimensional tu
bulence. The 3-D extension of the- 3 criterion in Hallef*
certainly offers hope that this is possible, although the topo-
logical approach we used here needs to be combined with
new ideas to extend to higher dimensions. Finding the analog
of the dynamic hyperbolicity conditiori16) for velocity
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o(Xg,1)= Iimi [(V(Xg+T,t)—V(Xg,t))-n|ds

c02€2)s.0)
1
=lim—; [[VV(Xq,t)r+0O(|&?)]-n|ds
e—02€°J5,(0)
1
=I|m—2rf |VV(Xg,t)r-n| ds
e—02€ 5(0)
+J |(’)(|r|2)-n|ds]. (A1)
SE(O)
Since
1 1
lim— |O(|r]?)-n|ds<lim— Ce’em=0,

e02€2Js.0) €—0€

the limit of the second integrand i29) is zero. Lettingr
= e&, we can therefore rewritéAl) as

1
#0000~ | [Fvr0.08 10,

with the integral taken over the unit circtéintroduced in

fields governed by the quasigeostrophic equations would bgec. ] A.

of great interest in geophysical applications. A more detailed  To evaluate the above integral, recall that the velocity
analysis of elliptic coherent structures should also be posfield points inwards orC within the time-dependent sector
sible, making more use of the local flux and its two compo-y ~(t) and outwards in the sectdit* (t). Since the total flux

nents. Fina”y, while the types of shear jetS we identified hel’Q)f the incompressible Ve|0city field is zero over the Cir@le
do occur in laminar flows, a more general approach to thenj,e can write
is clearly needed. For instance, one could define them as the
most “near-parabolic” regions in the flow, i.e., regions where
one of the eigenvalues of the strain acceleration tensor is
close to zero. Such a relaxed definition would certainly be _ _
sl n th exploraton of geophysealdata sets wi s T () dtes e bouray it (0 el er e,
'rAecht)?teesdeélssselﬁ;ez_e planned for further study and will beand equalsm/2. Let Z* denote the part o that bounds
¥ (t) along&", and letZ~ denote the part o that bounds
ACKNOWLEDGMENTS ¥ (t) along & . Applying the Green’s theorem t& ~ (t)
and using incompressibility, we obtain that
The author would like to thank Antonello Provenzale for
his permission to use his turbulence solver, and Andrew Poje
and Guo-Cheng Yuan for generating the data set analyzed in
this paper. He is grateful to one of the anonymous referees
for his/her valuable suggestions that have led to several im-

' _ ' . —f Vv(xo,t)&ndr,  (A3)
provements in the manuscript. The author is also indebted to Z7(1)

Tieh-Yong Koh and Bernard Legras, who pointed out an eryheren denotes the unit normal pointing int (1) in all

ror in an earlier formulation of Theorems 2 and 3. Finally, heinege integrals, and is a radial coordinate. Now along
is thankful to Andrew Poje for a close reading of this Paperz+(t) we let §:’re+(t) (with |e*|=1), which leads to

This research was partially supported by AFOSR Grant No.
F49620-00-1-0133, National Science Foundation Grant No.
DMS-98-00922, and a United Technologies research grant.

cp(xo,t)zfc_(t)Vv(xo,t)g-nds, (A2)

f Vv(xo,t)g-nds=—f Vv(Xq,t)&ndr
C (1) zZT (1)

1
—f Vv(xo,t)g-ndrz—zf rvv(xq,t)et-e dr
zt () 0

APPENDIX =—(Vve',e").

1. Proof of Proposition 2 A similar calculation gives

To prove statementi), we start by introducing a local
coordinater defined ax=xy+r. In terms of this new coor-
dinate, the expressiaill) for the local flux can be rewritten
as which, when combined witfiA2) and (A3), gives

—f VV(Xg,t)&ndr=—(Vve ,e"),
Z7 (1)
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o=—[(Vve",e ) +(Vve ,e")]

(e +e7) (et+e)

2o o2

=—2(Se",e” )——2<
=\2l9.

Here we used the facts thae(+e")/\2 is precisely the
compressional eigenvector &, and the norm of the com-
pressional eigenvalue is just the square rootf2. This
completes the proof of stateme(it.

To prove statementi), we first recall that? ~(t) has

G. Haller

2. Proof of frame independence for the EPH patrtition,
¢, and ¢~

Let us first assume th&(x,t) #0. Note that by(1) and
(5a), we have

d
a|§|§:§f:01 <§_ M§ >_ |§|§ =

2 dt2
The first equation shows that the orientation£ofis frame-
independent since it is the zero set of the frame-independent
function (d/dt)|&.%® This fact combined with the second
equation shows that the sign 6£,M &*) is also indepen-

constant area. As a result, the mstantaneous net flux of thgent of the frame, since it is given by the sign of

linearized velocity fieldVv(x,,t) € into it is zero® This im-

plies thatm¢(Xp,t) is equal to the outward flux through the directions gi_

linesZ* andzZ~
velocity field (6) out of B throughZ™*, then(A2) gives

(X, )= () + o (1). (Ad)

(d%/dt?)| &2, a frame-independent quadratic form, along the

But then (12) implies that the signs of

Cf (pt(t) denotes the flux in the linearized (P+(th) and ¢~ (x,t) are frame independent.

Assume now tha8(x,t)=0, i.e., the pointx belongs to
the seté(t). Performing the change of fran{&3), one ob-
tains that in the new frame the gradient of the transformed

It is this last equation that we shall use below to evaluate th¥€locity u(y,t) is of the form

local flux.

The instantaneous net flux of the linearized velocity field

throughZ™ can be written as

: d
o= [ [Ergien] on

where the integrand is just the inner product of the relative

velocity of the fluid througlz ™ and the unit outward normal
ntoZ* at the pointé=re*(t) (with |e"|=1). Noting thamn
points in the direction ofV(£,Sé)|.+,we can rewrite the
above integral as
1 +
¢+(t)=2f Si
0 B

dr.

f—r—(e (t)))

Differentiating formula(2) in time and using the fact that
g =A& =rAe’, we can further rewrite this last expres-

sion in the form

sv()—f|

f oIS +|(Me ,efydr

et )+ (e",Set)]dr

_1(e"Me") 1(£M&)
. (A5)
2 |se| 2 |gse|
An identical argument establishes the result
: d 1(&
qf(t)zfz(f—ra(e-))- 2<|§ ||5§|> (A6)
By (A4)—(A6), we have
o) (<§+M§+> (E M)}
> BEINGER

as claimed in statemefii) of Proposition 2.

Vu=Q"WwQ-Q'Q.

SinceQ is proper orthogonaIQTQ is skew-symmetric, as
one verifies by direct calculation. As a result, at the priat
time t we have

1
E(Vu+ Vu")=Q'SQ=0,

i.e., the rate of strain also vanishes in the new frame. Con-
sequently, the point will belong to the elliptic regiore(t)
even after the change of coordinat&8). This completes the
argument from the frame independence of the EPH patrtition.
As for the frame independence of (x,t) ande ™ (x,t),
note that their value only depends on the orientation and not
on the magnitude of*, as one sees from the formul42).
Then the argument we gave above implies that frame inde-
pendence ofp™ and hence that of.

3. Proof of Theorem 1

We give a proof that combines a Lyapunov function-type
argument with a topological technique, the Wasewsky prin-
ciple, and with the finite-time invariant manifold results de-
veloped in Halle#* and Haller and Yuaf®

Let us consider a trajectomy(t) generated by the veloc-
ity field v(x,t), and the associated linearized system,

E=AE (A7)

whereA(t) =Vv(x(t),t), and the vectok is taken from the
two-dimensional spacg=R?. The extended phase space of
the (§,t) variables will be denoted b} XR. By assumption
the trajectoryx(t) stays in the hyperbolic regiogH(l). As a
consequence, the strain acceleration terderis positive
definite and the rate-of-strain tensBris nondegenerate for
alltel.

We now restrict the linear velocity fiel@A7) to I, then
extend it smoothly to the whole time axis in a way that
A(t) [and henceS(t) and M (t)] become constant matrices
outside a slightly larger interval,
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IE:[tO_E,t0+€], (A8)

for some small constart>0. This can be done in a fashion
that the function

v(t)= min (e(t),M(t)e(t))>0, (A9)
le(t)[=1,
et)ez

andA(t), the negative eigenvalue &t), satisfy
def.
v(t)=vpyip= minv(t) — e,
tel
(A10)

def.
N =Npin=min\(t)—¢, teR.
tel

(For the details of this construction, see HajférWe select
e>0 small enough so that

Vmin> O, )\min< 0.

We also note that by the continuity ¢&Me) in e, for all
small enoughe>0, we have

VYmin

5

min
ley|=1,
dist (e(t),Z2)<e

(e(t),M(t)e(t))> (A11)

We will now establish several properties of the smoothly
extended linear system. For simplicity, we keep the sam

notation for the extended system, i.e., keep referringAf

when we discuss the properties of its infinite-time extension.

(a) £&=0 has a stable manifold £ Since the rate-of-
strain matrix S is indefinite, the quadratic fornC(&,t)

=(£,S¢) takes both positive and negative values in any open

neighborhood of the origid=0. Also by assumption, the
derivative ofC along solutions,

C(&1)=(£SH) +(£SE) +(£SE)
=(SALH+(ESAD+(£SH=(EME), (A12)

is positive definite for allée Z, andte| [and hence for all
te R by (A10)]. It then follows from(A12) that

C(&Y)=vminl &% €7, teR. (A13)

Next, we want to argue that the extended systém)
admits a solution that converges to the origin. Sifias
indefinite, there exists a regiol ~ in the extended phase
space such that

W ={(&1) e XXR||g=<1, (A14)

We denote the boundary d&f ~ by 9% ~, and the interior of
v~ by (P )=¥"—9¥ . [We also recall that the
=const slice of¥ ~ is denoted byV " (t), with its boundary
denoted by " (t).] Let us consider a trajectog(t) which
satisfies &(tg) = & e W (ty). Observe that as long a&(t)
ei(¥ (1)), its norm|&(t)| decreases monotonically by the
estimate

C(£1)=<0}.

d d .
GilE2= G (E8-2E8H=-2(£:59 =2C(£0<0,
(A15)

éor
i
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where we usedAl14) from above. We claim that i(t)
ei(P (1)) for all t=tq, then(t) tends to the origin as
— 00,

Assume the contrary, in which case, Gy15), there ex-
ists a positive numbef<|&(ty)| such that

|&(D)]> 6, t>1. (A16)

Consider then an unbounded, monotone sequence of times
{ti}k—o- By (A15), | &ty)| is a bounded, monotone sequence
and hence it converges to some-0. By the continuity of

&(t), this implies

lim|&(t)|=o. (A17)
t—ow
By the monotonicity of |&(t)|, we must then have

lim,_..|&t)|=0, which together with(A16), (A17), and
(A15) implies that

lim dist(&(t),Z)=0.

t—oo

(A18)

Then selectinge>0 small enough if{Al1l), formulas(A18)
and (Al1l1) imply

VYmin

2

t>T*,

EOIR (A19)

(&), M(1)&(1))>

some finiteT* >t,. Using(A16) and(A19), we can then
write

0> C(&1),1)=Clé to) + f " ), dr

to.
+ [ E@n.ndr=cigt
)

min o . 4
> o (t—T7),
(A20)

for all t>T*, which is a contradiction fot large enough,
since the first two terms on the right-hand-side of this in-
equality are bounded. Therefore, we indeed have

+fT*C(§(r),T) dr+

to

D) ei(P (1)), t=ty= lim &1)=0.

t—oo

(A21)

Now we want to argue that there are solutions of the
extended systerfA7) that actually stay in (W~ (t)) for all
t=t,. Showing the instantaneous linear flow geometry in the
strain eigenbasi@l,éz}. Figure 14 helps in verifying some
general properties of ¥ .

() On the boundary componemt=g¥ N{|&g=1}
the vector field points inwards bA15).

(B) On the boundary component?=o¥ NZ—{&
=0} the extended vector fielA7) points strictly outwards.
This follows by observing that ok'?> we haveC=0, while
on any nontrivial trajectory we hav@>0, by (A13).

() The boundary component®=¥~ —V1-V? is
just the invariant ling{ &= 0}.

(6) As a consequence ofa —(y), the set of points
immediately leavingV ~ is given byWm=V?,
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3 9 ’
gt 87=2(&59 =2 gXe(t) S(e(t))

teR

C<0 ‘\/'é'zl <2|&2maxe(t), S(HEt))

A ’: Lo =-2ag>
! w C>0 ; Vf' Integrating this inequality yields
o
|&(t)]<|&(to)|e 210, (A23)

for all solutions with&(ty) e Etso.

(b) £=0 has an unstable manifold“E This follows by
repeating the argument given {a) in backward time over
FIG. 14. Instantaneous flow geometry and the #Bt (t) under the as- the intervall,. That is possible since reversing time in the

sumption that the matrim(t) is positive definite. The coordinatés are  extended equatiofA7) gives
defined relative to the eigenbasis &f .

&=-A(-1¢
and hence the strain matri§(t)=— 2(A(—t) —A(—t))
=—9(—t) remains indefinite andvl(t)=M(—t) remains
positive definite ornZ. As a result, we can conclude the ex-
istence of an unstable manifolel'C XXR for the trivial so-
lution of the extended syste#\7). In analogy with(A23),
solutions inEY obey a growth estimate,

(e) Let us denote the set of points eventually leaving
W~ by We. By definition, WMCW®. SinceV? is clearly
not contained iNW®, we conclude thatV™ is relatively
closed inwev 5*

(¢) ¥~ is a closed set.

By definition, the properties §—(¢) make ¥~ a |&(t)| =] &(ty)| et 10,
Wasewsky setsee, e.g., Hafé). As a consequence, the fol-
lowing result(the Wasewsky principleholds for¥ ~: The
map

The exponenta in this estimate is the same as (A23),
which follows from incompressibility and Liouville’s theo-
rem. [Since tr@A)=0, the determinant of any fundamental
matrix of (A7) is constant in timg.
(c) The dimension of €and E'. The dimension of*®
u . . o
that maps initial conditions iW® to the point where they w;sswsisnmg%f%ue?i?lezyir:r(xg;l)nglnﬂ;nggSItg:ugng dg:e

leavew’”, is continuous. . Fig. 14 and note that foF to be continuousy:NW® must
We now use the WasewsKky principle to argue that thereD . _
e a union of two open sets, separated By {|£=1}.

are nontrivial solutions that stay ir~ for all times. Sup- Since this latter set is a point, by the continuity Bfwe

ose the contrary, i.e., suppose that all nonzero solutions . SR . .
IF:eavelIf* eventua)I/Iy. As a rESUIlWe”:‘I'*—W and hence conclude that dinE{=1, which implies that dinE*=2 in

. : : . S
T(¥~—V3)=V2. But a continuous map cannot map thethe extended phase spat&[R. Since the dimensions &;

u . . :
connected se¥ ~ — V? onto the disconnected s¢t, thus we ainrg EE&:a;dd up to the dimension of, we obtain that
have established a contradiction. We can therefore concluode (d) x(t.) is contained in a repelling material lineSince
that there exists a solutiog* (t) that stays inW ™~ for all Pering

S u H “ ” H H H
times. By (A21), & (t) must necessarily converge to zero, %I(?snggtaijelzhunzs, ivr\:terocc?:ci:atfrllinz:trt?ﬁa::\lznc?fmc(r)no?g:-
i.e., the £&=0 solution of the extended systefA7) has a y 9 9

[:We—Wim (A22)

stable manifold, which we denote 157.%° hates,

For later use, we now estimate the rate at which solu- £=R(t)#. (A24)
tions inE® converge to the trivial solution. L&} denote the  For anyt, the columns ofR(t) are chosen to be a linearly
t=const section ofg, and lete(t) be a unit vector irEf.  independent set of unit vectors taken fr&fUE! . In the »

Note thate(t) can be chosen as a continuous functiort.of coordinates the extended systéAv) takes the form
For that reason the functiofg(t),S(t)e(t)) is continuous in ¢t 0

t and hence admits a maximum over the compact intdrval n= ) n,
SinceES lies in the interior of the sectoF ~, this maximum 0 a'y

is less than zero. Selecting>0 small enough in the defini- with two scalar functiong(t) andq"(t)= —q3(t). We par-

(A25)

tion of | € [cf. (A8)], we can therefore ensure that tition » accordingly inton=(%° 7"). The solution compo-
nents can be written as
def. S(+) — bS S u — PHu u
t)=®3(t to), t)y=d"(t to),
A maxe(t), S(He(t)y= - maxe(t), (O ED)>0. =207, 7 O= PO 7t
tel€ teR with the estimates
[D3(t)|<e™ 2710, [|dY(t)]|=ex(1), (A26)

Combining the definition o with the inequality(A15), we
obtain that for anyé(t) € E, forall tel.
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Now let us return to the underlying trajectoxyt) and T
let £=x—x(t) denote a new local coordinate along the tra-  Area(Z(t))<7, (A27)
jectory. Differentiating this change of variables with respect
to t, Taylor expanding/(x(t) + £t) in £ and then switching 1-€., the area of the sectd(t) cannot reach that o ~(t).

to the variabley introduced in(A25), we obtain the differ- Note, however, that the area @{t) is increasing since the
ential equation net flux into it is positive both along the boundagy (t) as

well as alongC3(t), while it is zero alongg; by the invari-

(@) 0 ance of the stable manifolE®. We can therefore write for
77:( 0 g%t 7L, anytel=[tq,t,] that
t
where, for any fixedte| we havef(#,t)=0O(|#|?). For Area(ﬂt))IArea(ﬂtl))Jrft fCS( )Vv(xo,r)g
1 T,

equations of this form satisfying decay estimates of the type

(A26), we showed in Halléf the existence of smooth finite- 1t

time stable and unstable manifold¢(0) and WY(0) in the ‘ndsdr+ §ft | Po(X0, 7)[d7,

extended phas®. Here dimWS(0)=dimES=2 and !

dim WY(0) =dim EY=2, and the manifolds are tangent® where the first integral is the total fluid area enterif{g)
andEY, respectively, along the solutiog=0, i.e., along the along the boundarg®(t), and the second integral is the area
trajectoryx(t) for tel. [These invariant manifolds are not €ntering alongZ™ (t). The above equation leads to the esti-
unique, but the distance of, say, two unstable manifolds is ofate

the orderO(e K(2"1) je. decays exponentially as the 1 [t

length of the interval increased.We can, therefore, con- Area(?(t))>§J |¢_(%g,7)|dT,

clude thatx(t) is contained in a repelling material line !

(finite-time stable manifold We note thaix(t) is also con-  which, together with(A27), gives the estimate

tained in an attracting material linéfinite-time unstable

t
manifold). f 2|(,00(X0,T)|d7'<g. (A28)
ty
4. Proof of Theorem 2 But (A28) establishes a contradiction with assumptid#)
Statementi) follows from an inspection of the solutions Of the theorem, thus(t) cannot be finite-time hyperbolic
of (6) in the casex(t) e P(J), whereJ is any subinterval over the interval.
within I. Indeed, no material lines formed by the solutions
given in (10) are finite-time hyperbolic. Therefore, hyper- 6. Proof of Theorem 5
polic material 'Iines F:annot spend a whole interval of tidne To prove the theorem, we use E(5) to rewrite the
in the parabolic region. _ _ strain acceleration tensor in the form
The proof of statemerti) will follow immediately from
the proof of Theorem 3 given below. In particular, see for-

1
=2 _02__ 2
mula (A28). M=5+2SQ—-Q pP+ vV<S+G. (A29)

We recall that at any fixed timig the hyperbolic regior(t)

is defined as the spatial region satisfying

Since the trajectory(t) is assumed to stay in the elliptic _ _
region&(1),M is indefinite for allt e 1. As a result, on pre- (§".M£7)>0,(§ Mg )>0. (A30)
cisely one of the sides of the sectgr (t) the flux is nega- In what follows we take the zero strain directio&$ to be
tive, i.e., fluid is flowing into the interior ofy~ (t). We as-  unit vectors for computational simplicity.
sume that this happens on the side spanned hyif not, we To obtain a sufficient dynamic condition on Lagrangian
simply change the indices @' and &~ in our notation. hyperbolicity, we shall derive a single condition that implies

Assume the contrary of the statement of the theoremboth conditions in(A30). Therefore, if this new single con-
i.e., assume that the trajectaxyt) is finite-time hyperbolic. dition is satisfied over a time intervalalong a trajectory
By definition, this implies that thg=0 solution of the lin-  x(t), then this trajectory is contained in a hyperbolic material
earized equatioli6) is finite-time hyperbolic. In that case it line overl by Theorem 1.
must admit finite-time stable and unstable manifolds over the  To evaluate the condition6A30) using the expression
interval |. These manifolds are actually vector bundles., (A29) for M, we first note that the directions of zero strain
their t=const sections are lingdy the linearity of(6). E;, obey the relation
the t=const section of a finite-time stable manifold of the
origin, must lie in the interior of the time-dependent sector = _ &*te (A31)
¥~ (t) where the distance of trajectories from the origin J2
strictly decreases.

Consider the time-dependent sectfiit) enclosed by
E;, the linez™(t), and theC3(t) arc of the unit circle that
connects these lines. SinE§C ¥ ~(t), we must have Se=se,, Se=-se,, s=0.

5. Proof of Theorem 3

where ¢ denote the unit eigenvectors of the rate-of-strain
with the properties
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For concreteness, we also fix a particular orientationefor
ande, by requiring

(A32)

Then, using(A31) we obtain the following identities:

e Xe,>0.

- Q2 et :S_Z - Ta\_2
<§ ,S§ > 2<el—e21el—e2> s,

(£7,29087)=—2(&,QS¢")
—(e1+6,08(e, * &)

=325(Qe,8)=FSw,

w2
(£, -0%)=|0¢ = .

Here, in the second identity, we used the orientation rulg,

(A32) as well as the fact that for two-dimensional incom-
pressible flowsSQ = — QS. Using the three identities above
together with(A29), we can rewrite the condition®30) as

1
(ST wl2)?— ;<§i,P§i>+ v(€°,V?SE") +(£7,GE7)>0.

Recalling thats=0, we find that both of these conditions
hold if

1
(s—|wll2)*~ ;(fi,P§i>+ W€, V2SE") +(§°GE")>0.
(A33)

Using the quantities introduced in Sec. IV C and recalling
that & are unit vectors, we can write down the following
estimates:

(£ PE )=k, —(§,V°SE")=0, —(£,GE)=y.
From these estimates we obtain thaB84) is satisfied if con-
dition of (16) of Theorem 5 holds, which completes the
proof.
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