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The geometry and statistics of mixing in aperiodic flows
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The relationship between statistical and geometric properties of particle motion in aperiodic,
two-dimensional flows is examined. Finite-time-invariant manifolds associated with transient
hyperbolic trajectories are shown to divide the flow into distinct regions with similar statistical
behavior. In particular, numerical simulations of simple, eddy-resolving barotropic flows indicate
that there exists a close correlation between such geometric structurgmhihessplots that
describe the distribution of Lagrangian average velocity over initial conditions. For barotropic
turbulence, we find that Eulerian velocity correlation time scales are significantly longer than their
Lagrangian counterparts indicating the existence of well-defined Lagrangian structures.
Identification of such structures shows a similar, close relationship between the invariant manifold
geometry and patchiness calculations at intermediate time scales, where anomalous dispersion rates
are found. ©1999 American Institute of Physids$§1070-663(99)02910-4

I. INTRODUCTION time mixing theory and patchiness plots for realizable, ape-
fiodic flows. In Sec. Il the geometric theory of mixing for
aperiodic flows is reviewed. We recall how finite-time-

where particle motion in a two-dimensional point-vortex- invariant manifolds provide exact templates for particle dy-

driven oscillatory flow was analyzed. Since then the subjecpamlcs and divide the flow into regions with similar mixing

has been treated in numerous pafiee, e.g., Ottirfofor a properties. In sec. Il the notion qn‘atc_hiness _plota's intro- _
survey. While the dynamical analysis of mixing in two- duced and shown to be a powerful diagnostic tool for aperi-

dimensional time-periodic and quasiperiodic flows has re-OdIC flows. A comparison of the two approaches and a dis-

ceived much attention, mixing mechanisms in aperiodiccuss'on of their remarkable correlation is given in Sec. 1V,

flows have mainly been treated using a combination of nuyvhere the phenomena of oceanographic eddy shedding and
merical and probabilistic tooksee, e.g., Babianet al.? del two-dimensional turbulence are treated by these techniques.

Castillo? Weiss et al.® Zaslavsky? and Ziemniaket al.’). 1 EINITETIME-INVARIANT MANIEOLDS AND MIXING
The main reason is that several key results in dynamical” : )

systems theory are formulated in terms of maps, and hence We consider a two-dimensional velocity field of the

are inapplicable to flows whose evolution cannot be approxiform

mated via repeated iterations of a map. Another reason is that . .

dynamical systems has traditionally been concerned with X=uxy.n),  y=vixy), @

asymptotic behavior, a concept that is undefined for finiteand assume that on the time interyal ,t*], the velocity

time experimental and numerical datasets. field admits a set of closed velocity contours bounded by a
Recently, two different approaches have been proposetime-dependent, singular contour curgg that contains a

in dynamical systems to circumvent the difficulty of aperi- saddle-type stagnation point(t)=[x(t),y(t)] [see Fig.

odic time dependence. First, Mé%igsed tools from ergodic 1(a)]. We refer to this structure askinematic eddy

theory to study and predict Lagrangian velocity averages in  As shown in Haller and Poj¥,if the deformation rate of

two-dimensional flows. Such averages can be used to corhe kinematic eddy stays below a theoretical bound, then the

struct patchiness plotshat reveal regions in the flow with flow admits a nearbyyperbolic fluid particle motiord (t)

similar finite-time statistical propertigsf. Malhotraet al®). =[Ix(t),I'y(t)] that attracts a se¥V*(I") of initial condi-

Second, Haller and Pditdeveloped a geometric theory of tions exponentially, and repels another ¥é{(I"). These

mixing in two-dimensional, aperiodic fluid flows. This com- sets are two-dimensional surfaces in the extended phase

puter assisted analytic theory enables one to condiinitda-  space of the variablgs,y,) and can be considered as finite-

time invariant manifolds for any finite-time velocity dataset, time analogs of the well-known stable and unstable mani-

thereby providing a complete understanding of individualfolds of dynamical systems theory. However, unlike stable

mixing events associated with mesoscale structures in appland unstable manifoldW*(I") and WY(T") are not unique,

cations(cf. Poje and Halléf* and also Milleret al?). which is related to the fact that they are constructed based on
In this paper we explore the connection between finitefinite-time information. Still, they turn out to be unique up to

The dynamical systems perspective on the problem o
mixing in fluid flows was introduced in the paper of Afef,
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Once the existence of exponentially unique stable and
unstable manifolds is known, they can be determined nu-
merically using the straddling techniques developed in Miller
et al'? The numerically determined manifold&(I") and
WHY(T"), in turn, define the boundaries ofdgnamic eddyn
the extended phase spdsee Fig. 1b)]. They also provide
an exact classification of initial conditions in terms of their
finite-time behavior. Namely, fluid particles falling in the
“channel” between the two manifold are mixed into the
eddy, while all other particles are excluded from mixing.
This enables one to define exact eddy boundaries in Lagrang-
ian terms, complementing Eulerian definitions such as those
a) b) given by Weisg?3

FIG. 1. (a) The formation of &inematic eddyn the Eulerian field(b) The
dynamic eddydefined by stable and unstable sets in the extended phasH'- STATISTICAL PROPERTIES OF PARTICLE

space. MOTION

In a bounded domaivM, let f be an arbitrary bounded
errors that vanish exponentially as either the time intervafunction f:M—R. The finite-time average of along the
At=t*—t~ or the strength of the hyperbolicity increases. InParticle paths of a two-dimensional velocity fieldis given
summary, if the speed and the deformation rate of a kineby
matic eddy are not too large, and if it exists on a long enough 1 [t
time interval, then a “saddle-type” fluid particle motion ex- f*(t,%0,Y0) = ?f f[X(7,X0,Y0),Y(7,X0,Y0),7]d7, (2)
ists near the path spanned by the stagnation pafit)t with 0
finite-time stable and unstable manifoltisat are uniquely where x(7,Xg) is the location, at time= 7, of a particle
determined for all practical purposes. Complete proofs ofocated atx, at timet=0. For a velocity field with periodic
these statements as well as a sample application can be foutithe dependence, it can be shovsee Mezi¢ Mezic and

in Haller and Pojé® Wiggins*¥) that in the infinite-time limit the level sets of the
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FIG. 2. Double-gyre primitive equations: stable manif@wld red line and patchiness plot of thecomponent of Lagrangian velocity, averaged over 60
days. The Eulerian velocity, averaged over the same 60-day interval, is shown contoured. Contour interval 010g,nofs, ) =(—0.3 m/s,0.3 m/s
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averagd ™ are invariant sets for the dynamics. Moreover, the !
joint level sets of time averagd$ of a system of orthogonal :
basis functiond; can be shown to be invariant sets on which ot Y4
the dynamics of the flow is ergodic. These results rely on the N
use of Birkhoff's ergodic theorert. For flows with aperi- i
odic time dependence, the limit in question might not e¥ist,
but the finite-time average plots still indicate a great deal
about mixing properties of the flow, especially if the function
f is chosen in a physically relevant way. The physical quan-
tity that determines the statistical behavior of particle paths is
the velocity that a particle samples along its path. The veloc-
ity vector v determines two functionsy,: M—R and
vy:M—R. Thus, we consider the finite-time average veloci-
ties v (t,X0,Y0) =[X(t,X0,Y0) —Xol/t and vy (t,Xo,Yo)
:[y(tixO’yO)_yO]/tl Where[X(t,Xo,yo),y(t,Xo,yo)] is the
position at timet of a particle starting atx,,yo) at timet

=0. Plots ofv} (t,Xg,Y0) and vy (t,xo,Yo) as functions of
the initial particle locationsyy,yo have been nameplatchi-
ness plots by Malhotraetal® after previous work by
Pasmantet’

IV. RESULTS

The above ideas are evaluated in the context of an eddy-
resolving, reduced gravity, primitive equation model of the ; R
wind-driven circulation in an ocean basin. In brief, the shal- I N A
low water equations, Time

FIG. 3. The Lagrangialuppe) and Eulerian(lower) velocity autocorrela-

au au au (9h u 5 tion functions in barotropic turbulence. In each, the autocorrelation of the
5t U P + v —y_ fo(1+By)v= (9X —+F'+ Ve, component of velocity is dashed; tiecomponent is solid.
v ov av ,dh y 5
at +L’_jLV_y”LfO(l”L'By) —9 W”LF +rViy, and Haller*! Here we concentrate on the relationship be-
tween such structures and Lagrangian statistical measures
d(uh)  d(vh) described by patchiness plots.
ot ox ay Figure 2 shows the intersection, at timet,, of the

finite-time stable manifold corresponding to a detaching me-
are solved on a regular gridx=Ay=10km using second- ander event with the—y plane. The associated hyperbolic
order finite difference method&. The effects of smaller- trajectory is located df ~(950,950). The Lagrangian mani-
scale motions have been subsumed in the Laplacian diffusiofold structure is superimposed on a patchiness plot of the
terms with an “eddy viscosity” coefficient; g’ is the re- 60-day averaged component of the velocity. The calcula-
duced gravity, i.e., the normal gravitational accelerationtion was performed using 10000 particles initialized on a
weighted by the density difference between the active uppetegular grid at time,. The average velocity of each particle
layer and the quiescent lower lay&p/p. No-slip boundary is computed and plotted at the initial particle location. The
conditions are imposed on the velocities at the sidewalls. Theorrespondence between the manifold geometry and the
parameter values are typical of basin scale simulatisas, Lagrangian-averaged velocity is striking. The “mixing chan-
e.g., Figueroa and OlsEh and are given in Poje and nel” formed by the extended branches of stable manifold
Haller* clearly marks those initial conditions in the jet region that
The imposed wind stress, F{,FY)=[(79/pHyq) possess significantly negative average velocity. A contour
Xsin(2my/L,),0], sets up a double gyre circulation; a cy- plot of the x component of the Eulerian velocity, averaged
clonic (counterclockwisgcirculation in the north and an an- over the same 60-day time period is also shown. While there
ticyclonic circulation in the south. We concentrate our atten-is a strong correlation between the finite-time manifold ge-
tion on the strong jet region that separates the two gyresometry and spatial variations of the Lagrangian velocity sta-
This jet is unstable and, like the midlatitude oceanic jets, it igistics, there is very little correlation between the Eulerian
meant to model, intermittently rolls up, shedding large-scaleand Lagrangian statistical descriptions on the time scales
eddies in the process. A complete description of the finiteconsidered. The appearance of relatively long-lived coherent
time-invariant manifold structure produced by transient hy-structures such as the detaching eddy implies that the dynam-
perbolic points in the detaching eddy flow is given in Pojeics of fluid particles, and hence Lagrangian statistics, are
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FIG. 4. Barotropic turbulence: patchiness plot of the magnitude of the Lagrangian-averaged velocity for averagitay @rogd) 1.0, (c) 2.5, and(d) 5.0.
The stable(green and unstabléred) finite time manifolds associated with three hyperbolic trajectories are superimposed.

dominated by the saddle dynamics associated with distinand
guished hyperbolic trajectories. Such structures point to
strong spatial inhomogeneities in the flow and in the inter- U(X,tg) -u(x,tg+t)
mediate time Lagrangian statistics. Ruu(t,to)=
In order to test the persistence of such observations in

less obviously well-ordered flow fields containing identifi- respectively, are shown in Fig. 3. Here the Lagrangian ve-
able coherent structures, we consider the Lagrangian dynanycity along a trajectory, as a function of the initial position
ics of freely decaying barotropic turbulence. The numerlcag(o’ is denoted by(t,x,), while the Eulerian velocity field is

modgl u_sed i582a stano_lard spectral schef®ee Babia_no denoted byu(x,t). The operatorg(-)) andm correspond
et al_.) with 12 _resolunon_ on a_s_caled,72>_<277 domain to averaging over all initial conditions and all space, respec-
solving the quasigeostrophic vorticity equation, tively. The autocorrelation times, given by
dJq
ot

|U(X!t0)|2

— 4 o
A= v, Toto= | Rutioat,
whereq=(V2—F?)y andF =10 is the scaled inverse of the
Rossby deformation radius. The finite deformation radius deare different for the two processes with the Lagrangian time
creases vortex—vortex interactions at scales greaterttan scale,T,,~0.5, considerably shorter than the Euleriag,
and leads to the formation of relatively long-lived and robust~8. The difference between the two time scales can be ex-
vortex structures on this scalsee Provenzalet al?9). plained by the presence of robust coherent vortex structures
The trajectories of & uniformly seeded particles are that evolve relatively slowly in the Eulerian frame while ef-
computed alongside the evolving velocity field. The La-fectively mixing Lagrangian particles. These are the condi-
grangian and Eulerian velocity autocorrelations, defined bytions under which the analytic conditions for the existence of
finite-time-invariant manifolds are satisfid¢dee Haller and
R,y(tto) = {v(to,%o) 'V(IOJFZt'XO» PojeY), and the existence of organizing finite-time manifolds
" (Iv(to,%0)[%) can be concluded.
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FIG. 5. Barotropic turbulence: patchiness plot of theomponent of Lagrangian velocity, averaged over 2.5 time units with finite time manifolds superim-
posed. Unstablep, in red. StableWs in green. The three hyperbolic points are marked by crosses,
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