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Abstract

We consider two coupled nonlinear Schrodinger equations with even, periodic boundary conditions, that are damped and¨
ˇquasiperiodically forced. We prove the existence of invariant manifolds with Silnikov-type dynamics that are homoclinic to a

spatially independent invariant torus. Such manifolds appear to induce complex behavior in numerical experiments. q 1999
Published by Elsevier Science B.V. All rights reserved.

1. Introduction

This paper is concerned with dynamical behavior
in the coupled system of nonlinear Schrodinger equa-¨

Ž .tions NLS

22iE u sE u q2 u ut 1 x 1 1 1

2 2yi2 V t1ˆq ie D u yG e qg u u ,1 1 1 1 2

22iE u sE u q2 u ut 2 x 2 2 2

2 2yi2 V t2ˆq ie D u yG e qg u u , 1Ž .2 2 2 2 1

which contains damping in the form of a bounded
ˆnegative operator D, and quasiperiodic forcing with

Ž .amplitudes G and frequencies V . Both u x,tk k 1
Ž .and u x,t are even and periodic functions of x2

with period Ls2p . The time dependence of the

equations can be eliminated through the transforma-
tion u ™u eyi 2 V k

2 t, which givesk k

22 2E u syiE u y2 i u yV ut k x k k k k

2ˆqe D u yG qg u u , ks1,2, 2Ž .k k k k j

with js1,2, j/k. For the purposes of this paper,
ˆ ˆwe select D sya uqb B u , where a ,b)0,k k k K k

ˆand the operator B is a smoothed ‘model’ of theK
2 ˜Ž .diffusion operator E . In particular, if b l denotesx

ˆ Ž . Ž .the Fourier transform of B u x , and u l denotes˜K
Ž .the Fourier transform of u x , then

yl 2 u l , if l-K ,Ž .˜b̃ l sŽ . ½ 0, if lGK ,

with some fixed, large integer K)0.
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ˆ Ž .With the above choice of D, 2 is a coupled
version of the single perturbed NLS equation that

Žhas been studied extensively in recent years see,
w x w xe.g., McLaughlin and Overman 9 , Li et al. 7 ,

w x w xMcLaughlin and Shatah 10 , Haller 4 , and the
.references therein , preceded by a number of studies

Žon its finite-dimensional approximations see, e.g.,
w x w xKovacic and Wiggins 6 , Li and McLaughlin 8 ,ˇ ˇ

w x w x w xHaller 3 , Rothos 11 , or Haller 5 for a detailed
.survey . The goal of this paper is to understand how

the complicated dynamics found in the single per-
turbed NLS equation manifests itself in a coupled
system of such equations. Our emphasis will be on
the description of the infinite-dimensional phase
space geometry and not on detailed proofs. The
proofs of the technical results we use for near-inte-
grable, NLS-type systems of partial differential equa-

w xtions can be found in detail in Haller 5 .
Our main result is the existence of invariant mani-

Ž .folds in the phase space of 1 whose geometry
resembles those of certain orbits in finite-dimen-

ˇ w xsional ODEs, first studied by Silnikov 12 . The
exact dynamical implications of such sets are not
known yet; in fact, we believe that this is the first
example in which they are identified. We demon-
strate numerically the existence of spatio-temporally
complicated dynamics for the approximate parameter
values obtained from our analysis. The important

ˇfeature of Silnikov manifolds is that the shape of
individual homoclinic orbits in them can be quite
different; some of them involve significant motion
only in u , others only in u . This agrees with the1 2

pulse localization phenomenon observed numerically
for coupled NLS equations describing pulse propaga-

Žtion in optical fiber arrays see, e.g., Aceves et al.
w x.1,2 . The methods we use in this paper are general
enough to bear on the equations of coupled optical
fibers, and hence we expect to identify similar be-
havior for those equations in future work.

2. The integrable limit

In this section we describe the es0 limit of
Ž .system 2 . Since in this limit the system decouples

to two integrable NLS equations, we can use the
integrable geometry of the NLS, as discussed, e.g.,

w xin Li et al. 7 , to understand the integrable geometry
of coupled NLS equations.

2.1. The resonant two-torus and its stability

Solutions with E u sE u '0 at ts0 remainx 1 x 2

spatially independent under the flow, therefore the
set PsP =P with1 2

P s u E u '0 , ks1,2,� 4k k x k

is a four-dimensional invariant space. An important
subset of P is the two-dimensional invariant torus
CCsCC =CC , the product of the two circles1 2

CC s u u 'V , ks1,2.� 4k k k k

This two-torus is completely filled with equilibria of
for es0, which correspond to periodic or quasiperi-

Ž .odic solutions of the original system 1 . Both fre-
quencies of the latter solutions are equal to those of
the forcing, thus we will refer to CC as a resonant
torus.

Since the coupled NLS system decouples into two
integrable NLS equations for es0, the stability

w xanalysis of Li et al. 7 for a single NLS equation can
be used to analyze the stability of the torus CC. In
particular, for 1r2-V -1, at any fixed point on CCk

the coupled NLS equations admit two pairs of
2(nonzero real eigenvalues "l s" 4V y1 , ak k

zero eigenvalue with multiplicity four and with a
trivial Jordan block, and infinitely many purely
imaginary pairs of eigenvalues in with ks1,2k , j

and js1,2, . . . . Therefore, at any point of the torus
CC, the unperturbed system admits two-dimensional
stable and unstable subspaces E s and Eu, and an
infinite-dimensional center subspace. The center sub-

0 Žspace is the direct sum of the space E 'P corre-
.sponding to the zero eigenvalues and an infinite

dimensional subspace Ec corresponding to the purely
imaginary eigenvalues.

2.2. Homoclinic orbits

As earlier studies showed, each individual
Schrodinger equations in the coupled NLS system¨
admits two one-parameter families of orbits homo-
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Ž .Fig. 1. The geometry of the homoclinic set W CC .0

clinic to the circle CC for es0. We label these twok
qŽ . yŽ .families as W CC and W CC .0 0

Ž .It follows that a four-dimensional manifold W CC0

of homoclinic orbits exists for the torus CC in the
phase space of the coupled NLS system. The uk

qŽ .component of a homoclinic orbit lies in W CC ,0 k
yŽ .W CC , or CC , where the " signs refer to different0 k k

families of orbits, i.e., different components of the
Ž .stable manifold of CC . The homoclinic set W CC isk 0

therefore the union of eight manifolds of the form
AA =AA where1 2

AA g Wy CC ,CC ,Wq CC .� 4Ž . Ž .k 0 k k 0 k

Here we excluded the set CC =CC as it gives CC1 2
Ž 1 2 .itself. Introducing the multi-index Ps P , P with

k 0Ž .� 4P g y1,0,q1 and letting W CC 'CC , the ho-0 k k
Ž .moclinic set W CC can be written as0

W CC sD W P CC ,Ž . Ž .0 P / 0

W P CC sW P 1
CC =W P 2

CC .Ž . Ž . Ž .0 1 0 2

The geometry of this homoclinic set is sketched in
Fig. 1. Individual solutions homoclinic to CC are

Ž .contained in one of the components of W CC , and0

are of the form

uh P t s uh P 1
t ,uh P 2

t . 3Ž . Ž . Ž . Ž .Ž .1 2

h P kŽ .Here u t is a homoclinic orbit for the k th unper-k
Žturbed NLS equation given by see., e.g., Li et al.

w x.7

uh" x ,t sV e if k 0Ž .k k

=
cos2 p y isin2 p tanht "sin p sech t cos xk k k k k

,
1.sin p sech t cos xk

4Ž .

with

y1 2 2( (p s tan 4V y1 , t s 4V y1 tq t .Ž .k k k k 0

The " index of the solution reflects the sign of P k.
As an example, the pointwise norm of a homoclinic
solution uhq x ,t ,uhq x ,t is shown in Fig. 2.Ž . Ž .Ž .1 2

Geometrically, the orbits in the homoclinic manifold
Ž .W CC are typically heteroclinic connections be-0

tween different points of the torus CC. These end-
points have the same modulus, but their complex
phases differ by

Dfs Df1 ,Df 2 sy4 p , pŽ .Ž . 1 2

y1 2 y1 2( (sy4 tan 4V y1 ,tan 4V y1 .ž /1 2

2.3. N-chains

In what follows, we will show the existence of
solutions of the coupled NLS system that are doubly
asymptotic to the space P of spatially independent
solutions. The solutions will be constructed as con-
tinuations of chains of unperturbed heteroclinic con-
nections and will make several pulses, i.e., depar-
tures and approaches, relative to P . A precise defi-
nition of an N-chain of unperturbed homoclinic or-
bits is the following.

hq hqŽ .Fig. 2. The graph of z x,t s u x ,t ,u x ,t for theŽ . Ž .Ž .1 2

coupled NLS system with t s0, t s5, V s0.6, V s0.8.01 02 1 2
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Fig. 3. The u component of a 3-chain with P1 sq1, P1 sy1,1 1 2

and P1 sq1.3

Let us consider a set of unperturbed solutions
j N Ž .u t of the type 3 , each homoclinic to the� 4Ž . js1

torus CC, with the property

lim u1 t sb ,Ž . 0
t™y`

lim u jy1 t s lim u j t , js2, . . . , N.Ž . Ž .
t™q` t™y`

� 4N 1 2Let P be a sequence of vectors P s P , PŽ .j js1 j j j
k � 4w ith P g y 1 ,0 ,q 1 . T he solutionsj

1Ž . NŽ .u t , . . . ,u t are said to form an N-chain with
� 4Nbasepoint b and jump sequence P if for all0 j js1

tgR, we have

° q kW CC , if P sq1,Ž .0 k j

kj ~ CC , if P s0,u t gŽ . k jk

y k¢W CC , if P sy1.Ž .0 k j

NŽ .We denote an N-chain with basepoint b by X b .0 0

As an example, we show the geometry of an
3-chain in Fig. 3.

3. General formulation

In this section we recall some results from Haller
w x5 on the existence of multi-pulse solutions for
near-integrable evolution equations. We give a
semi-informal description of the results for the spe-
cific case of two coupled NLS equations to avoid the
introduction of further notation and terminology. For

w xa more general formulation we refer the reader to 5 .
Throughout this section, we will use the shorthand

1 1w xnotation H for the Sobolev space H 0,2p of
complex-valued L2 functions of x that admit a
bounded distributional derivative in L2.

Ž .We rewrite the coupled NLS system 1 as a
system of evolution equations

kE u s i= H u ,u qe g u ,u , ks1,2, 5Ž . Ž .Ž .t k u 0 k k kk

where

1 2p 2 2 4k 2H u ,u s E u q2V u y u dx ,Ž . H0 x k k k k2p 0

g u ,u s i= H u ,u qg u ,u , 6Ž . Ž . Ž . Ž .ˆk u 1 kk

with

1 2 cH u ,u sH u ,u qH u ,u qH u ,u ,Ž . Ž .Ž . Ž .1 1 1 1 1 2 2 1

iG 2pkkH u ,u s u yu dx ,Ž . H1 k k k k2p 0

g 2p 2 2cH u ,u s u u dx ,Ž . H1 1 22p 0

ˆg u ,u sD u . 7Ž . Ž .ˆk k k

The following features of this system of PDEs
w xenable one to apply general results from Haller 5

on the existence of solutions close to N-chains for
e)0:
1. The Hamiltonian H k splits as H k sH k qH k ,0 0 00 01

such that H k is smooth and bounded on bounded01

subsets of H 1, while the terms in H k are not00
Ž .bounded and generate the linear terms in 2 with

k Ž .second derivatives. More precisely, i= H u,uu 00k

'M k u, where the linear operator M k has a0 0

dense domain in H 1 and IM k u I y1 FKIu0 k H k

I 1 for an appropriate positive constant K.H

2. The perturbation terms in g smooth and boundedk

on bounded sets in H 1.
Ž . t 13. For any eG0, system 2 admits a flow F :H =

H 1
™H 1 =H 1 that is continuous in t and of

class C r in u and e for any fixed t.
4. In the finite-dimensional invariant subspace P ,

there exists an invariant torus CC of fixed points
for es0. Any fixed point on CC admits two
stable, two unstable and infinitely many center
directions.
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Ž .5. If E p denote the subspace of the center sub-
space that corresponds to purely imaginary eigen-

Ž .values, then E p 'E is independent of p and
the restriction of the operator M s M 1 , M 2 toŽ .0 0 0

this subspace generates a uniformly bounded
<group on E. More specifically, for AsM E,0

At '1 1Ie uI F 2 IuIH H

holds.
6. The torus CC admits a four-dimensional homo-

Ž .clinic manifold W CC with the properties de-0

scribed above.

3.1. N-pulse orbits

Under the above conditions, the following results
w xapply from Haller 5 . Let us define the Nth-order

energy function

DNHHs DNHH 1 ,DNHH 2Ž .
with

N `
N k k

l<D HH f sy = H ,G dt , 8² :Ž . Ž .Ý H u Ž t .0 0 k
y`ls1

1 NŽ . Ž . Ž .where G s g , g , and u t , . . . ,u t form ank k k

N-chain with basepoint b . As we will see below,0

one can think of the energy function as a generalized
Melnikov function: Its transverse zeros will corre-
spond to families of N-pulse orbits homoclinic to a
neighborhood of CC.

Theorem 1. For e)0 small enough, the follow-
ing hold:
Ž .i There exists a codimension-four inÕariant mani-

( )fold MM in the phase space of 2 that containse

a neighborhood of the unperturbed torus CC . MMe

also contains the inÕariant plane P .
Ž .ii Suppose that for some positiÕe integer N, the

phase Õector f gT2 is a transÕerse zero of the0

function DNHH, i.e.,
N ND HH f s0, det DD HH f /0.Ž . Ž .0 0

Suppose further that for ks1,2,

D jHH k f /0Ž .0

holds for all integers js1, . . . ,Ny1.
Then, for any choice of the Õector P gR 2 with1
k {}P gy1,q1, there exist infinitely many orbits that are1

homoclinic to the manifold MM . The homoclinic or-e

bits are close to N-chains with jump sequence

P k ssign D jHH k f P k , js1, . . . , Ny1.Ž .Ž .jq1 0 j

9Ž .

There also exists a similar family of orbits with jump
{ }Nsequence y Pj .js 1

Since the homoclinic orbits rendered by the above
theorem are close to N-chains, we call them N-pulse
orbits. We note that, in general, the two families of
N-pulse orbits described above do not form a smooth
set in the phase space H 1. However, they can be
shown to form a smooth, infinite-dimensional mani-
fold in a higher-order Sobolev space, H 4 Ny1. We
also remark that the manifold MM perturbs from ae

center manifold to the torus CC. The details of all
w xthese results can be found in Haller 5 .

3.2. N-pulse orbits homoclinic to plane waÕes

If f gR2 satisfies the conditions of Theorem 8,0

then the intersection set of the plane fsf is a0

two-dimensional subset of CC. It turns out to be a
first-order approximation for ‘takeoff’ points of a
four-dimensional family of N-pulse homoclinic or-
bits. They form a subset of the large family de-
scribed in Theorem 1, and have the special property
that they are asymptotic in backward time to the
four-dimensional plane P . It is feasible to try to find
first their backward limit sets on P , then investigate
their exact forward-time behavior as they come back,
after N-pulses, to a neighborhood of CC. We shall be
interested in the case where the backward limit set
for these orbits is a fixed point, and in forward time
the orbits return to the same fixed point.

We first introduce action-angle variables on the
invariant plane P by letting

if if1 2u ,u s I e , I e .Ž . ( (ž /1 2 1 2

To focus on a vicinity of the resonant torus CC, we
introduce the new coordinates hs h ,h gR2 de-Ž .1 2

fined as

'I s V q e h .(k k k
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A direct calculation shows that in the vicinity of CC,
the flow on P obeys the equations

'h sy e D HH h ,f qOO e ,Ž . Ž .˙ k f gk

'f s e D HH h ,f qOO e , 10Ž . Ž . Ž .k̇ h gk

with

HH h ,f sHH 1 h ,f qHH 2 h ,f ,Ž . Ž . Ž .g g 1 1 g 2 2

HH k h ,f syh 2 q2 G V sinf q2a V 2f .Ž .g k k k k k k k k k

11Ž .

Note that the reduced system has no dependence on
the parameter b at leading order. The following
theorem gives conditions for fixed points of the

Ž .reduced system 10 to admit manifolds of N-pulse
orbits in function space.

Theorem 2. Let VgR p be an open set in the
( )space of all parameters of system 1 . Assume that

Ž .i The Hamiltonian HH has a hyperbolic equilib-g
( ) ( )rium p l gP . If p l gP is the corre-0 e

sponding equilibrium of the perturbed system,
s( ( ))then the manifold W p l lMM is codimen-e e

sion-two within the manifold MM .e

Ž . s( ( ))ii The size of W p l in directions transÕersee

( q)to the plane P is at least of order OO e with
3some q- .5

Ž .iii For some positiÕe integer N and for all lgV,
( )there exists a function f l that satisfies the0

conditions of Theorem 1.
Ž . { ( )}iv The plane fsf l ;P intersects trans-0

Õersely the unstable manifold of the fixed point
( )p l gP of the Hamiltonian HH .0 g

Ž . ( ( ) ( ))v If h l ,f l are the coordinates of this0 0

transÕerse intersection point, then the point

( ( ) ( ))h ,f l qNDf l crosses the stable mani-0 0

fold of p transÕersely as l is Õaried through0

l .0
s i { }Then for eÕery Õector P gZ with P g y1,1 ,1 1

there exists a codimension-two set M q;R p =R
( )near the point l ,0 such that for eÕery parameter0

( ) ( )Õalue l ,e gM, the system 1 admits a two-dimen-
sional manifold of N-pulse orbits homoclinic to the

( )point p l . The jump sequence of the orbits is giÕene

by

P k ssign D jHH k f P k , js1, . . . , Ny1.Ž .Ž .jq1 0 j

Theorem 2 is just a special case of a more general
w xresult proved in Haller 5 . The proof is based on

infinite-dimensional invariant manifold techniques,
geometric singular perturbation theory, and detailed
estimates on solutions.

ˇ4. The existence of Silnikov manifolds

In this section we apply Theorem 2 to the coupled
Ž . Ž .NLS system 1 . Writing out the reduced Eq. 10 in

detail, we obtain that for e)0 the flow near the
torus CC satisfies the system of ODEs

2'h sy e 2 G V cosf q2a V qOO e ,Ž .˙ Ž .1 1 1 1 1 1

˙ 'f sy e 2h qOO e ,Ž .1 1

2'h sy e 2 G V cosf q2a V qOO e ,Ž .˙ Ž .2 2 2 2 2 2

˙ 'f sy e 2h qOO e . 12Ž . Ž .2 2

This shows that the two NLS equations decouple
form each other at leading order on P . At that order
we obtain that the phase space structure is the prod-
uct of those of two forced pendula, as shown in Fig.
4.

Fig. 4. Phase portrait on the invariant four-dimensional plane P near the torus CC for e)0.
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For e)0 small enough, nondegenerate critical
'Ž .points of HH give rise to OO e -close fixed pointsg

Ž .for 12 . Defining x sa rG , we see that fora k kk

x V -1, HH has a saddle pointa k gk

s x s 0,pqcosy1 yx V ,0,pŽ . Ž .Ž0 a a 11

qcosy1 yx V .Ž . .a 22

In view of Theorem 2, this saddle point is a candi-
date for a fixed point that admits manifolds of
multi-pulse orbits. Below we will verify the condi-

Ž .tions of the theorem for s x .0 a

Since the linear stability of the perturbed fixed
Ž .point s x is not changed by the coupling terms,e a

Ž .s x admits a codimension-four stable manifolde a
s Ž Ž ..W s x . The intersection of this stable mani-loc e a

fold with MM is a codimension-two submanifold ofe
sŽ Ž .. Ž 3r4.MM . The ‘height’ of W s x is OO e , ase e a

w xfollows from the normal form derived in Li et al. 7
for individual NLS equations and from the fact that
Ž .12 decouples at leading order.

Ž .To satisfy iii of Theorem 2, we have to ensure
that the energy function DNHH has a transverse zero.

Ž . Ž . Ž . N kUsing 6 and 7 , the expression 8 for D HH can
be rewritten as

N kD HH f s2V G sin f qNDf ysinfŽ . Ž .0 k k k k k

yNV a II V yb II V , KŽ . Ž .k k a k k b k

kyg II V , 13Ž . Ž .g

where

`1 2p 2II V s Re u E uŽ . H H ža k k x k
pV y` 0k

2 2 2
h"<q2 u u yV dx dt ,u Ž t ./k k k k

`1 2p 2II V , K s Re E uŽ . H H žb k x k
pV y` 0k

2 2 ˆ h"<q2 u yV u B u dx dt ,u Ž t ./k k K k k

`1 2pkII V s Re E uŽ . H H žg x x k
pV y` 0k

2 22
h"<q2 u yV u u u dx dt .u Ž t ./k k k k j

h"Ž .Since the homoclinic solutions u t are given by
H` functions that decay exponentially in time as
t™"`, the integral

`1 2p 2II V s Re E uŽ . H H ž0 k x k
pV y` 0k

2 2 2
h"<q2 u yV u E u dx dtu Ž t ./k k k x x k k

14Ž .

converges, and we have

lim II V , K sII V .Ž . Ž .b k 0 k
K™`

Ž .In fact, by analyticity of the integrand in 14 , we
can write

II V , K sII V qOO eyn K . 15Ž . Ž . Ž . Ž .b k 0 k

for appropriate n)0 and K sufficiently large.
Ž .Now, 13 shows that for

2 jp
Df / , jgZ,k N

ka II V yb II V , K yg II VŽ . Ž . Ž .k a k k b k g

4G NDfk k
- sin , ks1,2, 16Ž .

N 2

the function DNHH always has a transverse zero.
Ž .Furthermore, since the phase portrait of 12 is of the

type shown in Fig. 4, the two-dimensional plane
� 4f sf , ks1,2 has at least one transverse inter-k k 0

Ž .section point h ,f with the two-dimensional un-0 0
Ž .stable manifold of the saddle point s x .0 a

To apply Theorem 2, it remains to verify that the
Ž .point h ,f qNDf crosses the two-dimensional0 0

Ž .homoclinic manifold of the saddle s x trans-0 a

versely at some critical value of the parameters.
Ž . ŽUpon such a crossing, both h ,f and h ,f qk 0 k 0 k 0 k 0

.NDf mod 2p must lie on the same level curveŽ .k

of the local Hamiltonian HH k, i.e.,g

HH k h ,f q NDf mod2p sHH k h ,fŽ . Ž .Ž .g k 0 k 0 k g k 0 k 0
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must hold for ks1,2. Using the fact that f is ak 0

zero of DNHH, this last equation can be rewritten as

ak
b s II VŽ .k a k

II V , KŽ .b k

2Vk
q NDf V mod2pŽ .k kN

g I k VŽ .g
y , 17Ž .

II V , KŽ .b k

for ks1,2. This, however, only gives a meaningful
b value ifk

2 sin NDf V r2Ž .k k
x - ,ak V NDf V mod2pŽ .k k k

1
x - , ks1,2. 18Ž .ak Vk

Here the first inequality is obtained by combining
Ž . Ž .the second inequality in 16 with Eq. 17 , while the

second inequality ensures the existence of the saddle
Ž .point s x .0 a

Ž .Note that as long as NDf V -2p , N-pulse
orbits coexist with single-pulse orbits. This can be

Ž .seen by noting that for any NDf V -2p , we have
1 w Ž .x Ž . Ž .NDf V mod 2p'Df V in 17 .N

Ž .By 15 , for large enough K we can replace
Ž . Ž .II V , K with II V . Since b is a linear func-b k 0 k k

Ž .tion of a in 17 , the derivative db rda isk k k

nonzero whenever the condition gives a nonzero b .k
Ž .As a consequence, the point h ,f qNDf crosses0 0

the two-dimensional homoclinic manifold of the sad-

Ž .dle s x transversely. Therefore, Theorem 2 and0 a

our calculations in this section imply the following
result.

Theorem 3. Let N be an arbitrary but fixed
positiÕe integer, and let M be the set of points in0

( )the a ,b ,g ,G ,e parameter space that satisfy

a 2Vk k
b s II V qŽ .k a k

II V NŽ .0 k

=

kg I VŽ .g
NDf V mod2p y ,Ž .Ž .k k

II VŽ .0 k

a 1 sin NDf V r2Ž .k k k
- min ,1 ,½ 5G V NDf V mod2pŽ .k k k k

1 -V -1, 19Ž .k2

( )for ks1,2, with II defined in 14 . Assume further0

that M is a nonempty codimension two surface.0

Then for small enough e)0 and large enough
K)0, there exists a codimension-two surface M ine

( )the a ,b ,g ,G ,e space with the following proper-
ties:
Ž . 0i M is C -close to the surface M in thee 0

( )a ,b ,g ,G ,e parameter space.
Ž . ( )ii For eÕery a ,b ,g ,G ,e gM , system admitse

four four-dimensional manifolds of N-pulse ho-
moclinic orbits which are doubly asymptotic to

( )an inÕariant 2-torus of the original system 1 .
Ž . ( )iii In terms of the transformed system 2 , the

manifolds of homoclinic orbits are two-dimen-
( )sional and connect a fixed point s x gP toe a

ˇFig. 5. Silnikov manifold for the coupled NLS system.
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ˇFig. 6. Approximate parameter sets for the existence of Silnikov manifolds. Fixed parameter ratios are a sa , gra s1. The pulse1 2 k

number is Ns1 for the first case and Ns10 for the second case.

( )itself. Furthermore, the N-pulse orbits in 2
are close to N-chains with jump sequence

k y1P ssign 2V G sin cos yx VŽ .Ž½jq1 k k a

y1qjDf ysin cos yx VŽ .. Ž .a

yjV a II V yb II VŽ . Ž .Ž k a k 0 k

yg II k V P k ,Ž . 5.g j

js1, . . . , Ny1, ks1,2,

where P k can be either q1 or y1.1

The geometry of the manifolds of N-pulse orbits
Ž .obtained for the coupled NLS system 2 is shown in

Fig. 5. The manifolds exhibit a dynamical behavior
ˇsimilar to that of Silnikov-type homoclinic orbits in

ODEs. This is due to the fact that the infinitely many
purely imaginary eigenvalues in directions transverse
to P in the integrable limit turn into complex
eigenvalues with negative real parts. This geometry
prompts us to refer to the manifolds we obtained as
ŠilnikoÕ manifolds.

5. Numerical experiments

To illustrate the results of Theorem 3, we plot the
intersection of the two surfaces satisfying the condi-

Fig. 7. The spatio-temporal behavior of u x ,t on an initial and a later time interval. The parameter values are a sa s0.1,Ž .1 1 2

g sg s0.1, V s0.6, V s0.7, G sG s50.0, es0.001. The approximae b values, computed for these parameters, are b s1 2 1 2 1 2 k 1

0.40623 and b s0.33298.2
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Fig. 8. The L2 norm of u and u as a function of time on the solution shown in the Fig. 7.1 2

Ž .tions 19 in Fig. 6. In order to visualize the resulting
six-dimensional intersection surface in the eight-di-
mensional parameter space, we chose to fix the ratio
of certain parameters and plotted the resulting b rak k

values as a function of V and V . We recall that1 2
Ž .for any integer N with NDf V -2p , the first

intersection surface in Fig. 6 also marks the exis-
tence of N-pulse orbits.

ˇThe dynamical implications of Silnikov manifolds
are unknown at this point, but we expect them to be
the landmarks of temporally chaotic dynamics. Such
a behavior is clearly seen in our numerical experi-
ments, as we show in Fig. 7. The figure shows the
time dependence of u x ,t for a typical run withŽ .1

Ž .parameter values satisfying 19 . A nearly ‘flat’ ini-
tial condition was chosen by randomly selecting a
point on the unperturbed resonant torus CC, then

Ž y2 .applying a small of the size 10 random perturba-
tion off the torus. In our numerical experiments
Ž .u x,t went through periods where its energy was1

quiescent for a long time, then it jumped to large
oscillations. This phenomenon, shown in Fig. 8,

shows that the complicated behavior is not localized
to a single NLS equation for the initial conditions we
picked.
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