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Abstract. We develop a general, coordinate-free theory for the reduction of volume-preserving

flows with a volume-preserving symmetry on three-manifolds. The reduced flow is generated
by a one-degree-of-freedom Hamiltonian which is the generalization of the Bernoulli invariant

from hydrodynamics. The reduction procedure also provides global coordinates for the study
of symmetry-breaking perturbations. Our theory gives a unified geometric treatment of the
integrability of three-dimensional, steady Euler flows and two-dimensional, unsteady Euler flows,
as well as quasigeostrophic and magnetohydrodynamic flows.

AMS classification scheme numbers: 76C99, 53C80, 53C15

1. Introduction

In this paper we study three-dimensional flows which admit a continuous symmetry.
Motivated by applications to incompressible fluid flows, both the flow and symmetry are
assumed to be volume preserving. The three main questions we are interested in answering
are the following. First, under what conditions can we construct a first integral, i.e. a
guantity that is preserved by the flow? Secondly, is it possible to reduce the dimension of
the problem by 1 so that the reduced two-dimensional flow also preserves some volume?
Thirdly, can we use this reduction to construct coordinates in which symmetry-breaking
perturbations are conveniently studied?

It turns out that if the flow admits a symmetry group that has a volume-preserving
infinitesimal generatorw, and the flow is not everywhere tangent to the orbits of the
symmetry group, then it always admits a nontrivial invariant. This invariantan be
constructed explicitly based on the vector fieldhat generates the flow, the volunie
that is preserved by the flow, and the generaiaf the symmetry group (see formula (8)).

This result generalizes Bernoulli’s theorem in hydrodynamics to arbitrary volume-preserving
flows on three-manifolds.

With the above invariant at hand, it is tempting to reduce the three-dimensional flow
just by simply restricting the vector field to the level surfaces oB. This procedure,
however, has several disadvantages. First, the reduced flow in general does not conserve
any two-dimensional volume, i.e. there is no symplectic structure with respect to which
it is Hamiltonian (see section 7 for an example). As a result, there is no systematic way
to derive the reduced equations. In addition, the reduced equations admit no nontrivial
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invariant besides8, which is now a single constant for the whole reduced flow. Finally,
since the construction a8 depends on the given volume-preserving fieJdhe reduction
procedure depends heavily an This makes it impossible to study the structure of the
reduced problem for a class of flows with the same symmetry, as the corresponding vector
field v is different for each member of the class.

To remedy all these problems, we develop a reduction procedure which bears some
similarities with the symplectic reduction of Hamiltonian systems with symmetry (see, e.g.
Abraham and Marsden [1]). The reduced phase space here is not a level surface of the
invariant B, but rather the space of orbits of the underlying symmetry group action. More
precisely, it is the quotient spadé¢/ G, whereM is the three-dimensional ambient manifold
andG is the Lie group generating the symmetry. The orbit SpE¢e; turns out to inherit a
natural symplectic structure from the volume foftnand this structure only depends on the
symmetry, not on the given field. This enables one to study whole classes of symmetric
flows on the same reduced phase space. The projection of the flow on the reduced phase
space is now Hamiltonian, hence the reduced flow is also volume preserving. Remarkably,
the underlying Hamiltonian is just the generalized Bernoulli invarigirdescribed above.

In applications, one is often concerned with the effect of perturbations on the original
flow. These perturbations may not preserve the volume, nor break the symmetry of
the unperturbed vector field. To study the fate of unperturbed structures, one needs
an appropriate coordinate representation for the flow which facilitates the application of
perturbation methods. Such methods include Melnikov-type methods for the continuation
of homoclinic orbits, or KAM-type methods for the continuation of invariant tori. Our
reduction procedure renders these coordinates as a side result, as we show in section 5.
The original flow is represented in a set(of s) coordinates, where denotes a coordinate
on the reduced phase space, anidbels elements of the symmetry groGp The (y, s)
coordinates have two main advantages: their evolution depends onlpefore symmetry-
breaking perturbations, and their construction depends solely on the symmetry(g g
the generatow of its action. Finally, these coordinates highlight the relation of our reduction
procedure to contact geometry, as we show in section 5.

The volume-preserving reduction described in this paper is purely geometric and avoids
the usage of local coordinates on the underlying three-maniféld It generalizes and
extends the local, coordinate-dependent theory in Mard Wiggins [22] (see also Sposito
[25] for an extension) by rendering the reduced phase space with its symplectic structure,
as well as the reduced Hamiltonigh This general approach enables us to give a unified,
geometric treatment of the integrability of several classes of fluid flows. These flows include
three-dimensional, steady Euler flows and steady magnetohydrodynamic flows, as well as
two-dimensional, unsteady Euler flows and quasigeostrophic flows. In the case of two-
dimensional unsteady flows, the role of the maniftidis played by the three-dimensional
extended phase space of the varialiesy, t), and the preserved volume is the ‘space-time
volume’ dx A dy A dr.

2. Notation and definitions

In this section we collect the tools from the calculus on manifolds that we shall need
later. In order to emphasize the similarities with symplectic reduction, we will use the
notation customary in the theory of reduction of Hamiltonian systems with symmetry (see,
for example Abraham and Marsden [1] or Marsden and Ratiu [18]).

Let M be a three-dimensional manifold on which closed differential forms are exact.
The class of such manifolds includes, for example contractible manifolds, and in particular,
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R3. If v is a smooth vector field ol andy is a differentialk-form on M with 0 < k < 3,
then theinner productof v andy is thek — 1-formi,y, which is defined at a point € M
as

Lyy[x](uy, ..., up—1) = y[x](w(x), ug, ..., ug_1)

for all u; € T,M. Let N be another manifold angl be a differentialk-form on N. Then
any smooth magf: M — N can be used to define thpill-backof n to M as thek-form

f*n given by
Frnlx)u, - w) = nlf O fiug, ..., dfiug)

for all u; € T, M. Clearly, f*n can only be nondegenerate ff is a submersion, i.e. its
derivative df, is surjective at any point € M. Note that ify is a function (i.e. a zero-form),
then we simply havef*n =no f.

If f is a diffeomorphism betweeM and N, then thepush-forwardof any k-form y on
M can be defined as /aform f,y given by

FerD e, v = v OIS, Mors - df o)

for all v; e TyN.

If the vector fieldv is smooth, it generates a local flow ad which we denote by
F':M — M. Then thelie derivative of a functiory : M — N with respect tow is defined
as

d
Lyf(x) = Ef(Ft(x))h:O-

TheLie bracket[v, w] of two smooth vector fields andw on M is the unique vector field
which satisfies

Lyw =LyoLy,—Ly,olL,.
Furthermore,
L,2w =[v,w] = —=Lyv

is called theLie derivative ofw with respect tov. Finally, theLie derivative of a formy
with respect tov is defined as

d
L,y = —(F™y)|i—o.
Y dt( Y)li=0
A useful formula for this derivative is given by
L,y =di,y +i,dy Q)

where the operator d refers to the exterior derivative (see, e.g. Abraham and Marsden [1]).
Another formula that we will use is

i[u,w]y = Lyiyy —iwlyy (2)

(see Abrahanet al [2, p 445]).
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3. Volume-preserving flows with symmetry

Let Q be a volume form onM, i.e. a differential form that restricts to a non-degenerate
three-formQ[x](-, -, ): TxM x T:M x T.M — R at any pointx € M. Let v be a smooth
vector field onM. We say thab is volume preservingf

L,Q2=0.

This definition is equivalent to
divgv =0

where the divergence af with respect to the volume is defined through the formula
L, = (divg v)R2. )

If F'is the flow generated by, then we callF’ volume preserving ib is volume preserving.
In that case, we have

F*Q = Q. 4)
In this paper we are interested in volume-preserving flows that admit a symmetry.
To this end, we consider a one-parameter family of diffeomorphisma/odenoted by
g''M — M with s € G. HereG is a one-dimensional Lie group, which is assumed to be

R or S* for simplicity. We also assume that the vector fields equivariant with respect
to the action of this group, i.e.

v(g'(x)) = dg’v(x) = i,dg’ (x) (5)
for all s € G. The condition of equivariance can also be written as
[v,w] =0 (6)

where the infinitesimal generator of the action(fis given by

d N
w(x) = d_g (x)[s=o0-
A
We say thatw generates a&olume-preserving symmetfgr v if w is a volume-preserving

vector field, i.e.

L,Q=0. @)
In the following we will assume that (7) holds. Note that this implig$sQ = Q for all
s €q.

The following theorem states that all volume-preserving flows with a volume-preserving
symmetry admit an integral.

Theorem 3.1 (generalized Bernoulli theorem)Suppose thatw generates a volume-
preserving symmetry for the volume preserving vector fiel@ihen:
(i) The flow generated by admits a first integralB: M — R which satisfies
dB = —i,i, Q2. (8)
(i) L,B =0, i.e. B is constant along the orbits of the vector field

Proof. By our basic assumption on the manifalfl, to prove the existence of a functidgh
satisfying (8), it suffices to show thati,i,, Q2 is closed, i.e. di, 2 = 0. Using (1) we can
write
dii, Q2 =di,(i,R2) = L,({,Q) — i, di,Q2 = Ly(i, ) — i, L, Q2+ iyi,,dQ

= Lv(in) = i[v,w]g2 =0 (9)
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where we also used (2), (4), (7), and the fact th@tfdur-form on a 3-manifold, hence it
vanishes identically. To show thdt is a first integral for bothv and w, it is enough to
observe that

L,B =i,dB = —i,i,i,2=0

LyB =i, dB = —iyi,i,2=0.

This completes the proof of the theorem. O

We note that in the case df = R3 andQ = dx A dy A dz, we have—i,i,, Q) =
(v x w) - u for any vectoru. Hence formula (8) for the gradient of the invariabttakes
the form

VB =v x w. (20)

Our notation for first integral is motivated by the fact that for steady, incompressible,
inviscid fluid flows with velocityv and vorticityw = V x v, the above theorem simplifies

to the well-known Bernoulli theorem of fluid mechanics (see section 6). In fact, we can
decomposeB into the sum of kinetic and potential energy-type terms to make the analogy
with the Bernoulli invariant clearer.

Proposition 3.2. Let a one-formx and a functionp on M be defined by
do =i,Q (11)
dp = %divot — L. (12)

Then the invariantB of theorem 3.1 can be written as the sum of a kinetic energy-type term
and a pressure-type term:

B = %ivcx + p. (13)

Proof. First note that botlw and p are well defined since the right-hand sides of (11) and
(12) are closed and hence exact by our assumptioM ofrurthermore, from (11) and (12)
we obtain

d(3ia + p) = dija — Lyot = —i,dat = —iyiyy 2

hence by (8),B and %iva + p are equal up to a constant. O

We close this section by noting that there is a degenerate case in which formula (8)
of theorem 3.1 may give a trivial invariant, i.e. a constant. This happens when the vector
field v is everywhere parallel to the generatorof the symmetry, hence the forii, Q
vanishes identically. In such cases trajectorie® @fre not confined to lower-dimensional
level surfaces of3.

4. Reduction of volume-preserving flows

We will now use the presence of the symmetry to reduce our three-dimensional flow on
M to a two-dimensional flow on an abstract two-manifold, the reduced phase space. The
main result is that the reduced phase space can be endowed with a symplectic structure
through the volume forn®2 defined onM. The reduced flow is Hamiltonian with respect

to this symplectic structure. Furthermore, the corresponding Hamiltonian is precisely the
projection of the invarianB onto the reduced phase space.
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Consider the Lie groufi; whose action is generated by the vector field The group
actiong® is said to beproper if for any s € G, the map(s, x) — (x, g*(x)) is proper, i.e.
the pre-image of any compact set M x M under this map is compact iG x M. The
actiong® is said to befreeif for all x € M, the maps — g°(x) is one-to-one. Finally, the
action isregular if it is proper and free.

We define the orbit spac#f/G as a set of equivalence classes of points that lie on
the same orbit of the group actiggt. More precisely, we define the equivalence class
containingx € M as

[x] ={y e M|3s € G:¢’(y) = x}
and the orbit spacé//G as
M/G = Usenlx].

The usual quotient projection: M — M /G is defined asr(x) = [x]. We now recall a
result which is well known in the theory of Lie groups.

Lemma 4.1.If the group actiong®*: M — M is regular, thenM/G is a smooth, two-
dimensional manifold and is a submersion, i.edr,: .M — T,,M/G is surjective
forall x € M.

Proof. The lemma follows directly from an identical result for general Lie groGpand
general manifoldg// (see, e.g. Abraham and Marsden [1] or Olver [24]). d

By construction, the orbits of the group actighin M correspond to points in the orbit
spaceM/G. By formula (6), the flowF’ commutes with the group actiogf. This fact
will enable us to ‘project’ the flowF” onto the orbit spacé//G, which will therefore play
the role of a reduced phase space. For this reduction to make sense, we have to argue that
orbits of the full flow can be uniquely reconstructed from orbits of the reduced flow. The
following two lemmas present the main elements for this argument.

First, we show thatM/G can be endowed with a symplectic structure through the
volume form<2 defined onM.

Lemma 4.2. The two-formw defined as

@

is a symplectic form on the orbit spadé/G.

Proof. First we argue thab is well defined. Lety e M/G anduy, u, € T,(M/G). Since
7 is onto, there exists € M such thaty = [x] = #(x). Furthermore, by lemma 4.17d
is onto, hence there existg, v, € T, M such that &, v; = u;. Then, by definition,

a)[y](ula MZ) = _Q[-x](w(-x)7 V1, U2).
Now let x # x be another point such that= [x] = 7 (x). This means that andx lie on
the same orbit of the group actigri. As a result, there existse G such thatg®(x) = x.
This implies thatr (g (x)) = 7 (x), from which we obtain the relationnddg® = dr,. This
in turn implies

dnfdgiv,- = dﬂil_)l‘ (15)
for any two vectorsiy, v, € T M which satisfy d;v;, = dr,v; = u;. For w to be well
defined, the identity

Q[x](w(x), v1, UZ) = Q[)E](IU()E), 1_11’ 52) (16)
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must hold. To show this, we first observe that the volume preservation forgiitda—= Q
implies

Qx](w(x), v1, v2) = QF](dgw(x), dgjva, dgjvz) = Q[T](w(X), dgjvr, dgiva).  (17)
Now note that the kernel of the operatat;dis precisely spajw(x)}. Thus for any two-
dimensional subspacg that forms a direct sun§ @ spafqw(x)} = T;: M, we obtain that

drz|S: S — T,(M/G) is an isomorphism. Therefore, pf;: T: M — S denotes the canonical
projection on the first component of the direct sum, (15) shows that

ps(dgiv) = ps(®). (18)
Introducing the canonical projectiop;: T: M — sparfw(x)} on the second component of
the direct sum and using (18), we can write
Q] (w(X), dgjv1, dgiv2)
= Q[x](w(x), ps(dg;v1) + pc(dg;v1), ps(dgyv2) + pc(dg,v2))
= Q[x](w(x), ps(dg,v1), ps(dg v2))) = QLx](w(X), ps(v1), ps(v2))
= Q[x](w(x), V1, V2).
But this last expression and (17) together imply (16), hende well defined.
Next we show thatw is nondegenerate. Suppose that for somes M/G and
uy € Ty(M/G), w[y](us, uz) = 0 holds for allu, € T,(M/G). We have to show that

this impliesu; = 0. Again, by lemma 4.1, for anx € 7~%(y) we have two vectors
v1, v2 € T, M with dr,v; = u;. Then, by the definition of,

Q[x](w(x), v1, v2) =0
must hold for allv, € T, M. SinceQ is nondegenerate, this can only hold if

v; € spafw(x)} = ker(drn,)
which impliesu; = dr,v; = 0 as claimed. Finally, the smoothnesswofollows from its
definition by the chain rule. O

Next we show that the invarian® induces a well-defined Hamiltonian on the orbit

spaceM/G.
Lemma 4.3. The functionH: M/G — R defined through the relationship

(19)

is well-defined and smooth.

Proof. Consider any poiny € M/G. Sincer is surjective by definition, there exists a
point x € M such thaty = [x]. Then H(y) = H(w(x)) = B(x). Now suppose there
existsx # x such thaty = [x] holds. By the definition of the quotient spad¢/G, this
implies thatx andx lie on the same orbit of the group acti@fi. But then statement (ii)
of theorem 3.1 shows tha(x) = B(x), henceH is well defined. The smoothness &f
follows from the smoothness @ and from lemma 4.1 by the chain rule. O

We are now in the position to prove our main result about the relation between the flow
generated by the Hamiltoniali on (M /G, ») and the original volume-preserving floi/ .
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Theorem 4.4 (volume-preserving reduction).Suppose thatw generates a volume-
preserving symmetry for the volume-preserving vector fieldhssume that the associated
group actiong®: M — M is regular. Let us define the Hamiltonian vector fielg on
(M/G, w) as

0

wherew and H are defined in (14) and (19).
Then the following hold:
(i) The reduced vector fieldy is related to the vector field through the formula

v (T (x)) = dr,v(x). (22)

(if) The reduced flow}, generated by, commutes with the flow’ through the smooth
semiconjugacyr, i.e.

JToFleIr_Ion.

Proof. Sincew is nondegenerate andl is well defined, the Hamiltonian vector field,
is uniquely determined by (20). Therefore, to prove (i), it is enough to verify thatwd
satisfies (20). Let us fix a point € M and select an arbitrary vectap € T,(M/G) with
y = m(x). If vg is a vector such thatrg vg = uo, then

igrv0[y] (o) = w[y](@rxv(x), uo) = 7 *w[x](v(x), vo) = —Q[x](w(x), v(x), vo) (22)
by the definition ofw. On the other hand, form the definition & and (8) we obtain that
a*dH = dn*H = dB = —i,i,,Q
which shows that
dH,uo = dH,dr, v = n*dH[x]vg = —Q[x](w(x), v(x), vo).
But the vectorug was arbitrary, hence this last equation together with (22) proves that
vy = drr - v satisfies (20).

To prove statement (ii), we note that for any paintE M with 7(x) =y € M/G, we
have

d
aﬂ(F’(x)) = dr g U(F' (x)) = vy (T (F' (x)))

hence the projectionr (F'(x)) of the solutionF’(x) on the quotient spac#f/G satisfies

the Hamiltonian equations generated by the Hamiltorfian By uniqueness of solutions

for the reduced flow, this projected solution must coincide with the solution of the reduced
system that starts from the same point, i.e.

m(F'(x)) = Fy(7(x))

must hold. But this proves statement (ii) of the lemma sinacgas arbitrary. |
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5. Symmetry-breaking perturbations

In most applications the system under consideration is only approximately symmetric and
volume preserving, i.e. the corresponding vector figlccan be written in the form

v, = v+ €y 0<ex1
with
L,v=0 L,Q2=0
L,v1 #0 angor L, Q#£0.

Sincee is small,v, is a small perturbation of the vector field and one hopes that some
features of the flow generated hy can be understood based on the knowledge of the
flow of v. In practice, this can be achieved by applying some perturbation method, which
typically requires a suitable coordinate representatiom,ofin this section we show how
the volume-preserving reduction performed fotyields coordinates which are ideal for
perturbation methods.

We begin by recalling that the pre-image of any point M/G is a whole group orbit
in the phase spac#, hence the quotient projectiont M — M/ G is clearly not invertible.
However,7w becomes invertible if we restrict it to a suitable two-dimensional submanifold
of M. Suppose that after possibly shrinking the dom&fnthere exists a two-dimensional
submanifoldS ¢ M which has a unique, transverse intersection with every group orbit in
M. We then define the map

P=mr|S
and observe thaP is diffeomorphism betweei and the quotient space. Indeed, the
map d°, = dn,|7,S is an isomorphism since by the construction &f we have

kerdr, = spafw(x)} ¢ T.S. Then the inverse function theorem guarantees thas a
local diffeomorphism. BuP is one-to-one and onto, hence it is also a global diffeomorphism
betweenS and M/G.
Next we define the ‘orbit projection ma@’: M — S through the commutative diagram
M/G
T P
/ N (23)
M LN S.

Clearly, P takes any poinkt € M to the intersection of the orbit of the group actigh
throughx with the surfaceS, as shown in figure 1. Note thdt is surjective by definition
and smooth by the chain rule. We define the group orbit through a pgiatM as

¥y (x0) = Usec g’ (x0).
Since the actiorg® assumed to be regular and hence fregnfor any pointx € y (xg)
there exists a unique group elemerik) € G such that

g"™ (x0) = x. (24)

The mapt: M — G , x — t(x) is smooth by the implicit function theorem (here we used
the transverse intersection of group orbits with The following observation is fundamental
in our construction of coordinates.

Lemma 5.1. The mapC: M — M/ G x G defined as
Cx) = (w(x), T(x))
is a diffeomorphism.
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Figure 1. The geometric meaning of the map

Proof. The mapC is clearly a smooth bijection, so we only need to show thas a
local diffeomorphism, which in turn implies the smoothnesgof by the implicit function
theorem. We have

dr,
.- (%),
We will show that @, is an isomorphism by establishing that its kernel is trivial. Consider
a vectoru € kerd’,. Then we have

dr,u =0
dr,u = 0.

The first of these equations implies € spafjw(x)}. The second equation than gives
dr,w(x) = 0. But, dr,w(x) must be nonzero because the vector fields nonzero and
tangent to the orbits of the symmetry group, whose action is assumed to be free—thus the
functiont has a nonzero derivative along group orbits. Consequently, we obtaim th&

hence the kernel of@ is trivial. This completes the proof of lemma 5.1. O

Lemma 5.1 allows us to think of the m#@pas a change of coordinates #h The new
coordinates split into a two-dimensional part which is the coordipair the reduced phase
space, and a one-dimensional part which is the global coordinate the Lie groupG.

The following theorem shows that in these coordinates, the flow generated by the perturbed
vector fieldv, takes a particularly simple form which is suitable for the application of
perturbation methods.

Theorem 5.2. Suppose that there exists a two-dimensional manigld M which is a
global transversal surface to the orbits of the regular group actg¢nM — M, and each
group orbit has a unique intersection with Then(y, s) = C(x) defines a smooth change
of coordinates, which transforms the flowwgfto the form

y=vp(y) + eindr(y,s) (25)

§ = i,dr(y) + €iy,dr(y, 5)
where the Hamiltonian vector fieldy is defined in (21), and the mapis defined in (24).
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Proof. The first equation of (25) follows immediately by projecting the vector figld
to the reduced phase spasf/G with the maps, and using the results of theorem 4.4,
Similarly, the basic structure of the second equation follows from the calculation

§ =dr, - x =i, dr =i,dt + €i,, dr. (26)

We only have to argue that the functiggdr does not depend on the variablexplicitly.
To show this, we first note that fer= 0, the transformed equations (25) are invariant with
respect to the transformed group action

G'=Cog’ oC7 L.

This can be seen by introducing the unperturbed transformed vectonfieldvy, i,dt).
Forp e M/G x G, we have

V(G*(p)) = dCe-1gs(py) - VICTHG' (P))) = ACyi(x) - V(g° (x)) = ACys () dg} - V(x)
= dCys(x)dgidC;dC; - v(x)
= dCy(r)dg}dC, v (p) = dG3v(p)

where we used the equivariancewiinderg® (see (5)). But this equation means that the
vector fieldv is equivariant with respect tg*. By construction, for any group element
so € G the representation @* is very simple:

()= 1)

But equivariance with respect to this action means that the right-hand side of equation (26)
cannot depend or explicitly for ¢ = 0. ]

The above theorem provides a global coordinate representation for the perturbed flow on
the spaceM /G x G, as long as we have a global coordinate system defined on the reduced
phase spacad//G. Fore = 0, equation (25) is volume preserving, as its flow preserves
the volumeQ2 = C,. In this limit, the y equations decouple and yield the reduced system
on M/G. Taking the Cartesian product of reduced orbits with the Lie gr6éupve obtain
diffeomorphic copies nonsingular level surfaces of the invarigntThese surfaces form
invariant manifolds for the unperturbed problem, and one is usually interested in their fate
under perturbation. If the reduced orbit in question is closed, then the corresponding level
surface ofB is either a cylinder or a two-torus, depending on the nature of the gthup
In both cases, these level surfaces typically occur in families. In the case of two-tori, one
can expect the majority of the tori to survive if the unperturbed system satisfies certain
nondegeneracy conditions and the perturbed vector fieldev, preserves the volumg
even fore > 0. Details of the related KAM-type results can be found in Cheng and Sun
[10], Herman [13], and Xia [28]. If the reduced orbit in question is a homoclinic orbit, then
the corresponding level set @& is a two-dimensional homoclinic manifold asymptotic to
an orbity of v which is diffeomorphic to the symmetry group. The question is then the
survival of homoclinic orbits to an orbit. neary. This problem can be studied using the
appropriate version of Melnikov’'s method, which can be found, for example in Wiggins
[27]. The application of these two perturbation methods to three-dimensional vector fields
(with one equation decoupling in the unperturbed limit) is surveyed in 8ead Wiggins
[22]. Theorem 5.2 above gives conditions under which such a coordinate representation is
globally attainable, and also provides an explicit, geometric construction for the coordinates.

The coordinates developed in this section can also be used to endow the masifold
with a contact structure (see, e.g. Arnold [5] or Abraham and Marsden [1] for definitions).
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Proposition 5.3. Let us define the two-for@ on the manifoldV as® = n*w = —i, Q.
Then(M, w) is a contact manifold. Furthermore, assume thas an exact symplectic form,
i.e. w = df holds for some one-for®. Define the one-formi as

6 =dr+7%0 (27)

wherer is the function defined in (24). ThéM, 6) is an exact contact manifold armd = &.

Proof. To prove the first statement of the theorem, we recall {34t ®) is a contact
manifold if the linear map’[x]: T.M — T.M*, @[x](a) - b = &[x](a, b) has maximal
rank (i.e. rank 2) for any € M. But this is clearly true, since the kernel of[x] is
spanned by the infinitesimal generato¢x), hence it is one-dimensional.

By definition, (M, ) is an exact contact manifold with the one-fodmif 6 A dd is
a volume form onM. As shown for example in Abraham and Marsden [1], a necessary
condition for this is that @ is nondegenerate on the subbundle

R;=f{aeTM|6b(a)=0).

Now b = n*w = & = —i,, 2, hence d[x] is degenerate only on the subspace $pdn)).
But this subspace is not contained Ry, because

O(w) =dr - w+7*0(w) =dr - w+ 7*0(dr - w) = dr - w # 0. (28)
But (28) implies that spgdmw(x)} ¢ R, hence d is nondegenerate OR;. |

6. Applications

In this section we discuss several problems in which volume-preserving reduction can be
used. Many of the results listed below are known, but were obtained through different
procedures or irad hocways. Here we present a unified construction of invariants for all
these problems and describe the structure of the reduced equations.

6.1. Three-dimensional, steady Euler flows

The velocity field of a three-dimensional, inviscid fluid satisfies the equation
ov
at

wherep is the densityp is the pressure, angt is the potential energy. Taking the curl of
both sides yields the vorticity equation

+(v~V)v:—%(V1//+Vp) (29)

d
a_L: =W -Vv—(-V)w=[v, w] (30)
wherew = V x v. For steady, incompressible flows, equation (29) can be rewritten as
Vv|? 1
VX W= [v] + V¢ + —Vp. (32)
0

Furthermore, for steady flows (30) implies that

Ly,v=—[v,w] =0.
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Hence, ifg*: R® — R3 denotes the flow generated by the vorticity fieldtheng® commutes
with the flow F' generated by the velocity field. By incompressibility,F’ preserves the
standard volume forn® = dx A dy A dz on R3. Furthermore, using formula (3), we obtain

L,Q = (divw)Q = 0.

This shows that the vorticity generates a volume-preserving symmetry for the volume-
preserving velocity field (see Arnold [5] for more detail and references).
By formula (10), the invarianB guaranteed by theorem 3.1 satisfies

VB=vxw

which, combined with equation (31), gives that
1
B= Pty +L
2 P

is a first integral for the flowr’, i.e. it is conserved along streamlines. This is just Bernoulli’s
theorem from hydrodynamics.

By theorem 4.4, equation (31) can be reduced to a one-degree-of-freedom Hamiltonian
system on the quotient spadé/G. This space is a manifold if the open regid# is
selected in a way such that tlerticity field defined by the equations

dx  dv, 9y,
ds ~ dy 0z
dy 9dv, v,
I T2 32
ds az ox (32)
dz vy, Ou
ds  ox dy

generates a regular group action of. This means that either all orbits i are
nontrivial periodic orbits, or all of them are nonperiodic and nondense. THegGw
can be identified with an open set of a two-dimensional planec R3 that has a
unique point of intersection with every orbit of (32) M. Then the quotient projection
M — A, (x,y,z) > n = (m(x,y,z2), m(x,y,z)) is just the map that maps a point
(x, v, z) € M to the unique intersectiom of the group orbit througtix, y, z) with the plane
A. (Heren e R? denotes an arbitrary coordinate systemon The reduced symplectic
form w on M/ G then takes the forrw = f()dny A dip,. Sincew is nondegeneratef; ()
is nonzero onM /G, hence after rescaling time by— f(n)t, the reduced system can be
written as a canonical Hamiltonian system. This canonical system is generated through the
symplectic form @1 A dn, by the HamiltonianH defined in (19). Concretely, we obtain
the reduced system

n=JD, Elv(n)lerw(n)JrM} (33)

p(n)

where DO, denotes differentiation with respect 4o and

(5 h),

Note that this reduction is only meaningful if the vorticity field is not everywhere
parallel to the velocity field. Otherwise, as we discussed at the end of section 3, we obtain
dB = 0, hence the reduced flow is just a set of equilibria. In that case the reduction is
equivalent to arranging the orbits of the velocity field into an orbit space on which all
particle motions appear as relative equilibria. Classic examples of this degenerate case
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are theA BC-flows first studied by #non [14]. These flows violate Arnold’s integrability
condition (see Arnold [5]) for three-dimensional, steady Euler flows, which requigesd
w not to be collinear everywhere. The numerical experiments &fidid seem to produce
trajectories that densely fill up three-dimensional regions in the phase space. As a result,
the vorticity flow (32) cannot be regular on invariant open sets, because the orbit space
cannot be a two-dimensional manifold. These numerical results suggest that the vorticity
flow does not generate a proper group actiodiBC flows.

The global coordinates on the reduced phase space are in fact the Clebsch coordinates
of classical fluid dynamics. This is discussed in more detail in [22].

6.2. Two-dimensional, unsteady Euler flows

If the velocity fieldv appearing in the Euler equation (29) is in fact two-dimensional, then
the incompressibility conditiolv - v = 0 implies the existence of stream functigtix, y, r)

for the corresponding two-dimensional flow. Then the Lagrangian particle motions satisfy
the Hamiltonian equations

0¥ (x, p, 1)

=, 34
Xx=v 3 (34)
. aV(x, y,t)

=, = -

Y Y 0x

Taking the curl of both sides of (29) yields
d(V ) d(V JVV¥) =0
e XV)=— X = U
dr dr
This equation reflects the well-known fact that the only nonzero component of the vorticity,
£=(Vxv),=—AV

is conserved along particle motions, i.e.

I T T
E_% B % o, 35
a o  ax TV (35)

Consider now the spacR® with coordinates(x, y, 7). On this space, we will use the
velocity vector

Uy
1

We observe that the vector field

w = 3%
0x
0
preserves the volum@ = dx A dy A dr as
divow = 0. (36)

Moreover,

3 (v, | 9 de
a—y(WJFW)—@a
[v,w] =Dw-v—Dv-w= _ﬁ(av_t_l_f’“y)_‘_ ad | =0 (37)

ax \ox T 9y 9x dr
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where we used (34) and (35). Heneegenerates a volume-preserving symmetry for the
volume-preserving vector field on the extended phase spage y, ) € R® of the two-
dimensional, nonautonomous equation (34). The action of the underlying symmetry group
is given by the three-dimensional flow

de _ 9§

ds ~ dy

dy _ % (38)
ds ox

dr

& 0

which is generated bw. We pick an open domai ¢ R® which is invariant under the
flow of this equation and is filled entirely with either nonclosed orbits or nontrivial closed
orbits of (38). (The nonperiodic orbits cannot be dense fygdd= 0, hence the properness

of the group action cannot fail, only the freeness.) As a result, the flow of (38) defines a
regular action of the grougr = R or G = S* on the domain. By (36), this action is
volume preserving, and by (37), it commutes with the flow generated inythe extended
phase space. In that case, theorem 3.1 just repeats the fadt that first integral, as
formula (8) implies

9§ & i3 dg

8x(vxdt dx) = 8de + 8ydy + & dr = dt.

Finally, the reduced phase spad® G is a manifold which is diffeomorphic to an open set
of R?. For example, it can be identified with the intersection of a two-dimensional plane
of the extended phase spagewith M given byy = f(x), provided all orbits of (38) in

M have a unigue intersection point with N A. Then the same argument that led to (33)
gives that the reduced system dfy G can be written as a Hamiltonian system of the form

dvy(m) 8vx(n)}
dx ay |’

dB = —i,i,Q = —ﬁ(vydt —dy) —
dy

ji = JD, [
Here the corresponding Hamiltonian is therefore the vortigjtyvhich must be considered

as a function of the coordinateson the planeA.

6.3. Flows on a sphere

In the 8-plane approximation, the velocity field of an incompressible, inviscid fluid moving
on a rotating sphere with small Rossby number is given by

IV
Vy = ——
dy
ow
Vy = —
; 0x

whereW (x, y, t) is the quasigeostrophic stream function. It is well known that the potential
vorticity

q(x,y, 1) =AV¥(x,y, 1)+ By
with the planetarys-plane parameteg > 0 satisfies the conservation law

dg  9q dq dq
20,
a or T ax T Wy
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By direct analogy with the two-dimensional Euler equations discussed above, we obtain the
following result: letM c R® be an open set in the space @f, y, ) coordinates which
contains entire trajectories of the ‘potential-vorticity flow’ generated by the equations

dv _0q

ds dy

dy 9g

=~ 1 39
ds ox (39)
dr

ds

Assume further that either all trajectoriesifiare nontrivial periodic orbits or none of them
are periodic. Then the flow of (39) is the regular action of the gréug S* or G = R,
respectively, olM. The reduced phase spatf/G can again be taken as an open subset
of a planeA ¢ R2 which has a unique intersection point with every group orbit4n The
reduced flow oM /G is Hamiltonian and after a rescaling of time, it satisfies the equation

= JD,[AW(x(n), y(m), t(n) + By ()]

wheren denotes coordinates af.

The aboves-plane approximation is a simplification of the equations of motion of fluid
in a thin layer on a rotating sphere (see, e.g. Batchelor [6]). The full equations of motion of
the potential vorticity which is here defined @s+ f)/H wherew is the radial component
of vorticity, f = 2Q, cosd, with , the magnitude of rotatiors) the variable on the sphere
that is O at the north pole and changes along the latitude Fatkle depth of the layer of
fluid which is assumed constant. The evolution equation(do# f)/H is

d
aﬂw4:ﬂ/H)=0

and thus(w + f)/H is conserved on trajectories of the velocity field. This invariant is
easily seen to correspond to a spatial, volume-preserving symmery in the same way as in
the cases treated above. The motion of fluid on a sphere is interesting in the context of
geophysical applications (see e.g. [7]). We remark that Kirwan [15] has done previous work
on the flows on a sphere using concepts of symplectic reduction [19] to study the motion
of vortices.

6.4. Three-dimensional, steady, magnetohydrodynamic flows

The equations of an inviscid, incompressible, magnetic fluid are given by the equations

v 1 1

—+ @ -VYv=—(VVy+Vp)— —B x (VxB)

ot P 4

38_? +@w-V)B=(B-V)v (40)

where the vectoB denotes the flux, and the other quantities are the same as in the Euler
equation (29). By Maxwell's equations, we have

divB = 0. (41)
We can rewrite the second equation (40) as

0B

~ - =M. Bl (42)
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It is customary to introduce the vector potentilthrough the formula
B =V x A.

As argued for example in Kuzmin [16]4 can be selected in a way so that its evolution
satisfies the equation
dA dA

Pl it . - _ T
=5 T VA=A (43)

Now equation (42) shows that for steady flows we must have
Lgv=—[v,B] =0.

This equation and (41) imply thaB generates a volume-preserving symmetry for the
velocity fieldv. To construct a first integral far, we use formula (10) to write

VB =v x (V x A). (44)
Based on the identity
Vw-A) =vx(VxA+@ - V)A+(V)'A

we obtain from equations (43) and (44) that steady magnetohydrodynamic flows admit a
Bernoulli-type invariant of the form

B=A-v.
As in the case of three-dimensional, steady Euler flows, we obtain the reduced flow
n=JD,[A®m) - v(n)] (45)

in appropriate coordinates after a rescaling of time.

7. An example

In this section we show how our results can be applied to Hill's spherical vortex problem
amended with a line vortex at theaxis. This problem was studied in Mézand Wiggins
[22], where the reduction of the flow was accomplished via a local, coordinate-dependent
theory. Here we reconsider the same example and give an intrinsic, geometric meaning to
the reduction. Furthermore, theorem 3.1 enables us to construct a first integral for the flow
before performing the reduction.

Consider the three-dimensional flow generated by the vector field

xz —2cy/(x* 4+ y?)

v(x,y,2) = | yz+2cx/(x%+y?) |. (46)
1—2(x%+y?) — 72

Herep = (x, v, z) € R3, hence the manifold/ is just the usual three-dimensional Euclidean

space. Passing to cylindrical coordinates, it is easy to see that the vector field is equivariant

under rotations around theaxis. Hence, the corresponding symmetry groug@is= S*
with the group action

0 0 1

This action is proper but not free, because it leaves any point of-eas fixed for any
s € ST As a result, the reduced phase spat¢G may not be a manifold. Indeed//G
can be identified with the closed half planeRf, which is a manifold with boundary:

M/G ={(r,¢) e R?|r > 0}.

coss sins O
g(p) = (—Sins coss 0) p se st (47)
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The associated quotient projectianis given by

TM—> M/G

(X, ¥, 2) > (VX242 2).
As is easily seen, this map is not differentiable onskexis, a fact which is again related to
the degeneracy of the group action. Note, however, that if we exclude-dkes from M,
then M/ G becomes a manifold (the open half planeRs) andz becomes a smooth map
onto M/G. Nonetheless, we choosé to be the whole ofR3, because the reduced flow
will turn out to be nonsingular on the boundary Mf/ G (although the reduced symplectic
form does become degenerate DM/ G)).

From (47) we obtain that the infinitesimal generator of the group action is given by the
vector field

w=(_;x).

We now use theorem 3.1 to construct an invariant for the flow. We have
dB = xv.dx + yv,dy — (yvy +xv,)dz = x(1 — 2(x? + y?) — %) dx

+y(1 —2(x? + y?) — 2% dx — 2xyz dz
which yields that

B =3(x*+y) — 3%+ 9% = 3% + y))2?
is a first integral for the vector field. Then from the definitiont*H = B, we obtain the
reduced Hamiltonian

H(r,§) =302 —r* = r%?).
Furthermore, for any two vectoes b € T, , ;)M we have
7*wlx, v, zZ](a, b) = —i,Q[x, y, Z](a, b) = (ydy A dz + xdx A dz)(a, b)

= y(ayb; — a;by) + x(asb; — a;b,)

on the other hand

7*wlx, v, Z](a, b) = o[r, ¢](dra,drb) = f(r,¢) - dr A d¢(dra, drb)

= M[)’(Clybz — a:by) + x(arb; — azby)].

VX2 + y?
These two equations show thftr, ¢) = \/x2 + y2 = r, hence the symplectic form on the
reduced phase spadé/G is given by

w=rdrAdc.

We remark that the same symplectic form appeared in Broer [8, 9] in the study of local
bifurcations of three-dimensional, rotationally symmetric vector fields.

Our calculations imply that the reduced flow a@d/G is given by the Hamiltonian
equations

. 19H
=;¥=—V§ (48)
§=—}8£=2r2+42—1.

r or
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¢

Figure 2. The reduced flow for the example.

As we noted earlier, although the symplectic structure becomes degeneraterat-tfe
boundary of the reduced phase space, the reduced flow extends smoathly @ The
phase portrait of the reduced system is shown in figure 2. Note that, as we noted in
the introduction, the dynamics on the level surfacesBak does not necessarily preserve
any volume. This is quite transparent on the ‘bubble’ that corresponds to the rotation
of the heteroclinic orbit of (48) around theaxis. Any open set on this surface shrinks
asymptotically to the lower fixed point on theaxis. The closed orbits give rise to invariant
two-tori for the full flow. The flow on them is volume preserving but it is not Hamiltonian
(if there were a smooth Hamiltonian defined on one of these tori, the flow on the torus
would have at least two fixed points).

To obtain a representation of the full, three-dimensional flow in a form suitable for
perturbation theory, we can use theorem 5.2. Since any open half plaa@y, x > 0} is
globally transverse to the vector field we can pick the transverse surface

S=M/G—-0M/G
in which case the maf is just the identity map. The map: M — G can be defined
locally as

z(x,y,7) =tamt2

X
for x # 0. However, its differential is globally defined faf + y2 = O:
y X

dr = x2+y2dx+ x2+y2dy

which together with (46) gives
2c

idr = —.
2
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Hence, by theorem 5.2)(¢) perturbations of the full flow can be written in the form

F=—r{+ O(e)
;=27 +02—140()

2
§== 400
r

where theO(¢) terms in this equation are of the form shown in (25).

8. Conclusions

We have constructed a coordinate-free theory for the reduction of volume-preserving
flows on three-manifolds by volume-preserving symmetries. The reduced phase space
is a symplectic two-manifold, on which the motion derives from a Hamiltonian. The
Hamiltonian is a direct generalization of the Bernoulli integral from ideal hydrodynamics,
and can be represented as a sum of pressure-like and kinetic-energy-like parts. Aided by our
reduction procedure, we found globally defined coordinates in which the three-dimensional
vector field takes a particularly simple form. Based on this, we found a contact form which
makes the three-manifold in question an exact contact manifold. We have illustrated the
utility of all these concepts in three-dimensional steady and two-dimensional unsteady ideal
hydrodynamics, geostrophic flows and ideal magnetohydrodynamics.

Our results can be extended to the case when the vector fieddsl w are defined on
a manifold with boundary. The situation in whighis tangent to the boundary is natural
in fluid mechanics, a typical example being the rotationally symmetric flow in a body of
revolution. In such a case, we require the boundary of the flow to be invariant under the
action of bothv andw. As a result, one can take the quotient space of the boundary with
respect to the symmetry and perform the reduction separately on the boundary.

The above approach works in the case of two-dimensional boundaries, but naturally
fails for singular, one-dimensional boundaries, such as an axis of revolution. Since such
boundaries often occur in applications, there is certainly a need for the extension of our
theory to cover singularities. We believe that some of the ideas of &trak[3], Cushman
and Sjamaar [12], and Lerman and Sjamaar [17] can be adopted to establish the analogue
of singular symplectic and Poisson reductions for the volume-preserving case.

It is known that geometric phases in mechanics can be viewed as coming from the
reconstruction process of the vector field from the reduced phase space [18, 20]. The
work on geometric phases in two-dimensional (i.e. translation-invariant) flows was done
by Newton [23]. As these flows are translationally symmetric and time dependent, the
occurrence of geometric phases in them could possibly be linked with our theory. Another
possible development would be to link symmetry considerations developed here with the
issues of stability of inviscid fluid flows, a topic discussed in Chern and Marsden [11]. The
theory presented here may also have interesting consequences for the statistical mechanics
of three-dimensional Euler flows.

Finally, let us mention that the theory developed here might fit into a more general
framework of multisymplectic geometry [21].
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