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Where do inertial particles go in fluid flows?
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Abstract

We derive a general reduced-order equation for the asymptotic motion of finite-size particles in unsteady fluid flows. Our inertial equation is a
small perturbation of passive fluid advection on a globally attracting slow manifold. Among other things, the inertial equation implies that particle
clustering locations in two-dimensional steady flows can be described rigorously by the Q parameter, i.e., by one-half of the squared difference
of the vorticity and the rate of strain. Use of the inertial equation also enables us to solve the numerically ill-posed problem of source inversion,
i.e., locating initial positions from a current particle distribution. We illustrate these results on inertial particle motion in the Jung–Tél–Ziemniak
model of vortex shedding behind a cylinder in crossflow.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Finite-size or inertial particle dynamics in fluid flows can
differ markedly from infinitesimal particle dynamics: both
clustering and dispersion are well-documented phenomena
in inertial particle motion, while they are absent in the
incompressible motion of infinitesimal particles. As we show
in this paper, these peculiar asymptotic features are governed
by a lower-dimensional inertial equation which we determine
explicitly.

Let u(x, t) denote the velocity field of a two- or three-
dimensional fluid flow of density ρ f , with x referring to
spatial locations and t denoting time. The fluid fills a compact
(possibly time-varying) spatial regionD with boundary ∂D; we
assume that D is a uniformly bounded smooth manifold for
all times. We also assume u(x, t) to be r times continuously
differentiable in its arguments for some integer r ≥ 1. We
denote the material derivative of u by

Du
Dt

= ut + (∇u)u,

where ∇ denotes the gradient operator with respect to x.
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Let x(t) denote the path of a finite-size particle of density
ρp immersed in the fluid. If the particle is spherical, its velocity
v(t) = ẋ(t) satisfies the equation of motion (cf. Maxey and
Riley [13] and Babiano et al. [2])

ρpv̇ = ρ f
Du
Dt

+ (ρp − ρ f )g

−
9νρ f

2a2

(
v − u −

a2

6
∆u
)

−
ρ f

2

[
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D

Dt

(
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a2

10
∆u
)]

−
9ρ f

2a

√
ν

π

∫ t

0

1
√
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[
v̇(s) −

d
ds
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∆u
)

x=x(s)

]
ds.

(1)

Here ρp and ρ f denote the particle and fluid densities,
respectively, a is the radius of the particle, g is the constant
vector of gravity, and ν is the kinematic viscosity of the
fluid. The individual force terms listed in separate lines on the
right-hand side of (2) have the following physical meaning:
(1) force exerted on the particle by the undisturbed flow, (2)
buoyancy force, (3) Stokes drag, (4) added mass term resulting
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from part of the fluid moving with the particle, and (5) the
Basset–Boussinesq memory term. The terms involving a2∆u
are usually referred to as the Fauxén corrections.

For simplicity, we assume that the particle is very small
(a � 1), in which case the Fauxén corrections are negligible.
We note that the coefficient of the Basset–Boussinesq memory
term is equal to the coefficient of the Stokes drag term times
a/

√
πν. Therefore, assuming that a/

√
ν is also very small,

we neglect the last term in (2), following common practice
in the related literature (Michaelides [14]). We finally rescale
space, time, and velocity by a characteristic length scale L ,
characteristic time scale T = L/U and characteristic velocity
U , respectively, to obtain the simplified equations of motion

v̇ −
3R

2
Du
Dt

= −µ (v − u) +

(
1 −

3R

2

)
g, (2)

with

R =
2ρ f

ρ f + 2ρp
, µ =

R

St
, St =

2
9

( a

L

)2
Re,

and with t , v, u and g now denoting nondimensional variables.
Variants of Eq. (2) have been studied by Babiano, Cartwright,
Piro and Provenzale [2], Benczik, Toroczkai and Tél [5], and
Vilela, de Moura and Grebogi [20].

In Eq. (2), St denotes the particle Stokes number and
Re = U L/ν is the Reynolds number. The density ratio R
distinguishes neutrally buoyant particles (R = 2/3) from
aerosols (0 < R < 2/3) and bubbles (2/3 < R < 2). In the
limit of infinitely heavy particles (R = 0), Eq. (2) become the
Maxey–Riley equations derived originally in [13]. The 3R/2
coefficient represents the added mass effect: an inertial particle
brings into motion a certain amount of fluid that is proportional
to half of its mass. For neutrally buoyant particles, the equation
of motion is simply D

Dt (v − u) = −µ (v − u), i.e., the relative
acceleration of the particle is equal to the Stokes drag acting on
the particle.

Rubin, Jones and Maxey [17] studied (2) with R = 0 in
the special case when u describes a two-dimensional cellular
steady flow model. They used a geometric singular perturbation
approach developed by Fenichel [8] to understand particle
settling in the flow. The same technique was employed by
Burns et al. [7] in the study of particle focusing in the wake
of a two-dimensional bluff body flow, which is steady in a
frame co-moving with the von Kármán vortex street. Recently,
Mograbi and Bar-Ziv [15] discussed this approach for general
steady velocity fields and made observations about the possible
asymptotic behaviors in two dimensions.

Here we consider finite-size particle motion in general
unsteady velocity fields, extending Fenichel’s geometric
approach from time-independent to time-dependent vector
fields. Such an extension has apparently not been considered
before in dynamical systems theory, thus the present work
should be of interest in other applications of singular
perturbation theory where the governing equations are non-
autonomous. We construct an attracting slow manifold that
governs the asymptotic behavior of particles in system (2).
We also obtain an explicit dissipative equation, the inertial
equation, that describes the flow on the slow manifold. This
equation has half the dimension of the Maxey–Riley equation;
this fact simplifies both the qualitative analysis of inertial
dynamics and the numerical tracking of finite-size particles.

For two-dimensional steady flows, we use the inertial
equation to give a complete description of the asymptotic
behavior of aerosols, bubbles, and neutrally buoyant particles.
For general unsteady flows, we show how the inertial equation
can be used to locate the initial positions of dispersed
particles. Such source inversion is not possible using the full
Maxey–Riley equation, because for µ � 1, the −µu term in
(2) causes numerical solutions to blow up quickly in backward
time. We illustrate the forward- and backward-time use of the
inertial equation on the von Kármán vortex-street model of
Jung, Tél and Ziemniak [12].

2. Singular perturbation formulation

The derivation of the equation of motion (2) is only correct
under the assumption µ � 1, which motivates us to introduce
the small parameter

ε =
1
µ

� 1,

and rewrite (2) as a first-order system of differential equations:

ẋ = v,

εv̇ = u(x, t) − v + ε
3R

2
Du(x, t)

Dt
+ ε

(
1 −

3R

2

)
g. (3)

This formulation shows that x is a slow variable changing
at O(1) speeds, while the fast variable v varies at speeds of
O(1/ε).

To transform the above singular perturbation problem to a
regular perturbation problem, we select an arbitrary initial time
t0 and introduce the fast time τ by letting

ετ = t − t0.

This type of rescaling is standard in singular perturbation theory
with t0 = 0. The new feature here is the introduction of a
nonzero present time t0 about which we introduce the new fast
time τ . This trick enables us to extend the existing singular
perturbation techniques to unsteady flows.

Denoting differentiation with respect to τ by prime, we
rewrite (3) as

x′
= εv,

φ′
= ε,

v′
= u(x, φ) − v + ε

3R

2
Du(x, φ)

Dt
+ ε

(
1 −

3R

2

)
g, (4)

where φ ≡ t0 + ετ is a dummy variable that renders the above
system of differential equations autonomous in the variables
(x, φ, v) ∈ D× R × Rn ; here n is the dimension of the domain
of definition D of the fluid flow (n = 2 for planar flows, and
n = 3 for three-dimensional flows).
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Fig. 1. (a) The geometry of the domain D0. (b) The attracting set of fixed points M0; each point p in M0 has an n-dimensional stable manifold f s
0 (p) (unperturbed

stable fiber at p) satisfying (x, φ) = const.

Fig. 2. (a) The geometry of the slow manifold Mε . (b) A trajectory intersecting a stable fiber f s
ε (p) converges to the trajectory through the fiber base point p.
3. Slow manifold and inertial equation

The ε = 0 limit of system (4),

x′
= 0, (5)

φ′
= 0,

v′
= u(x, φ) − v,

has an n + 1-parameter family of fixed points satisfying v =

u(x, φ). More formally, for any time T > 0, the compact
invariant set

M0 = {(x, φ, v) : v = u(x, φ), x ∈ D, φ ∈ [t0 − T, t0 + T ]}

is completely filled with fixed points of (5). Note that M0 is a
graph over the compact domain

D0 = {(x, φ) : x ∈ D, φ ∈ [t0 − T, t0 + T ]};

we show the geometry of D0 and M0 in Fig. 1.
Inspecting the Jacobian

d
dv

[u(x, φ) − v]M0
= −In×n,

we find that M0 attracts nearby trajectories at a uniform expo-
nential rate of exp(−τ) (i.e., exp(−t/ε) in terms of the original
unscaled time). In fact, M0 attracts all the solutions of (5) that
satisfy (x(0), φ(0)) ∈ D× [t0 − T, t0 + T ]; this can be verified
using the last equation of (5), which is explicitly solvable for
any constant value of x and φ. Consequently, M0 is a compact
normally hyperbolic invariant set that has an open domain of
attraction. Note that M0 is not a manifold because its boundary

∂ M0 = ∂D × [t0 − T, t0 + T ]
⋃
D × {t0 − T }⋃

D × {t0 + T }

has corners; M0 − ∂ M0, however, is an n + 1-dimensional nor-
mally hyperbolic invariant manifold.

By the results of Fenichel [8] for autonomous systems,
any compact normally hyperbolic set of fixed points on (5)
gives rise to a nearby locally invariant manifold for system
(4). (Local invariance means that trajectories can only leave
the manifold through its boundary.) In our context, Fenichel’s
results guarantee the existence of ε0 (t0, T ) > 0, such that for
all ε ∈ [0, ε0), system (4) admits an attracting locally invariant
manifold Mε that is O(ε)Cr -close to M0 (see Fig. 2). The
manifold Mε can be written in the form of a Taylor expansion

Mε =

{
(x, φ, v) : v = u(x, φ) + εu1(x, φ) + · · ·

+ εr ur (x, φ) +O(εr+1), (x, φ) ∈ D0

}
; (6)

the functions uk(x, φ) are as smooth as the right-hand side of
(3). Mε is a slow manifold, because (4) restricted to Mε is a
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slowly varying system of the form

x′
= εv|Mε

= ε
[
u(x, φ) + εu1(x, φ) + · · · + εr ur (x, φ) +O(εr+1)

]
.

(7)

We find the functions uk(x, φ) using the invariance of Mε ,
which allows us to differentiate the equation defining Mε in (6)
with respect to τ . Specifically, differentiating

v = u(x, φ) +

r∑
k=1

εkuk(x, φ) +O(εr+1)

with respect to τ gives

v′
= uxx′

+ uφφ′
+

r∑
k=1

εk
[
uk

xx′
+ uk

φφ′

]
+O(εr+1), (8)

on Mε , while restricting the v equations in (3) to Mε gives

v′
=

[
u − v + ε

3R

2
Du
Dt

+ ε

(
1 −

3R

2

)
g
]

Mε

= −

r∑
k=1

εkuk(x, φ) + ε
3R

2
Du
Dt

+ ε

(
1 −

3R

2

)
g. (9)

Comparing terms containing equal powers of ε in (8) and (9),
then passing back to the original time t , we obtain the following
result.

Theorem 1. For small ε > 0, the equation of particle motion
(7) on the slow manifold Mε can be rewritten as

ẋ = u(x, t) + εu1(x, t) + · · · + εr ur (x, t) +O(εr+1), (10)

where r is an arbitrary but finite integer, and the functions
ui (x, t) are given by

u1
=

(
3R

2
− 1

)[
Du
Dt

− g
]

,

uk
= −

[
Duk−1

Dt
+ (∇u) uk−1

+

k−2∑
i=1

(
∇ul

)
uk−l−1

]
,

k ≥ 2. (11)

We shall refer to (10) with the ui (x, t) defined in (11)
as the inertial equation associated with the velocity field
u(x, t), because (10) gives the general asymptotic form of
inertial particle motion induced by u(x, t). A leading-order
approximation to the inertial equations is given by

ẋ = u(x, t) + ε

(
3R

2
− 1

)[
Du(x, t)

Dt
− g

]
; (12)

this is the lowest-order truncation of (10) that has nonzero
divergence, and hence is capable of capturing clustering or
dispersion arising from finite-size effects.

The above argument renders the slow manifold Mε over the
fixed time interval [t0 − T, t0 + T ]. Since the choice of t0 and
T was arbitrary, we can extend the existence result of Mε to an
arbitrary long finite time interval.
Fig. 3. Sudden changes in the velocity-field delay convergence to the slow
manifold.

Slow manifolds are typically not unique, but obey the
same asymptotic expansion (11). Consequently, any two slow
manifolds and the corresponding inertial equations are O(εr )

close to each other. Specifically, if r = ∞, then the difference
between any two slow manifolds is exponentially small in ε.
The case of neutrally buoyant particles (R = 2/3) turns out to
be special: the slow manifold is the unique invariant surface

Mε = {(x, φ, v) : v = u(x, φ), (x, φ) ∈ D0} ,

on which the dynamics coincides with those of infinitesimally
small particles. This invariant surface survives for arbitrary
ε > 0, as noticed by Babiano et al. [2], but may lose its stability
for larger values of ε (cf. Sapsis and Haller [18]).

4. Convergence to the slow manifold

The results of Fenichel [8] guarantee exponential conver-
gence of solutions of (4) to the slow manifold Mε . Translated
to the original variables, exponential convergence with a uni-
form exponent to the slow manifold is only guaranteed over the
compact time interval [t0 − T, t0 + T ].

Over finite time intervals, exponentially dominated conver-
gence is not necessarily monotone. For instance, if the velocity
field suddenly changes, say, at speeds comparable to O (1/ε),
then converged solutions may suddenly find themselves again at
an increased distance from the slow manifold before they start
converging again (cf. Fig. 3). Again, this is the consequence of
the lack of compactness in time, which results in a lack of uni-
form exponential convergence to the slow manifold over infinite
times.

Where do solutions converging to the slow manifold tend
asymptotically? Observe that for ε = 0, each solution
converging to M0 is confined to an n-dimensional plane

f s
0 (p) =

{(
xp, φp, v

)
: p =

(
xp, φp, u(xp, φp)

)
∈ M0

}
.

Fenichel refers to f s
0 (p) as the stable fiber associated with the

point p: each trajectory in f s
0 (p) converges to the base point of

the fiber, p. More generally, a stable fiber has the property that
each solution intersecting the fiber converges exponentially in
time to the solution passing through the base point of the fiber.
The collection of all fibers intersecting M0 is called the stable
foliation of M0, or simply the stable manifold of M0.

Fenichel [8] showed that the stable foliation of M0 smoothly
persists for small enough ε > 0. Specifically, associated with
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each point p ∈ Mε , there is an n-dimensional manifold f s
ε (p)

such that any solution of (4) intersecting f s
ε (p) will converge at

an exponential rate to the solution that runs through the point p
on Mε . The persisting stable fibers f s

ε (p) are Cr smooth in ε,

hence they are O(ε)Cr -close to the invariant planes f s
0 (p), as

indicated in Fig. 2(b).

5. Use of the slow manifold and inertial equation

5.1. Asymptotics of finite-size particle motion

A general particle motion (x(t), v(t)) is attracted to a
specific solution within the slow manifold Mε . This specific
solution runs through the base points of stable fibers intersected
by (x(t), v(t)). As a result, the forward-time asymptotic
behaviors seen on the slow manifold are the only possible
asymptotic behaviors for general inertial particle motion.

Rapid changes in the velocity field u(x, t) in time will lead to
rapid changes in the slow manifold, as seen from the definition
of Mε in (6). In that case, particles that have already converged
to the slow manifold may find themselves further away from the
slow manifold (whose location has rapidly changed). Particles
will converge exponentially to the new location of the slow
manifold, but may again find themselves temporarily at a large
distance from the manifold if a further rapid change occurs in
the velocity field.

5.2. Source inversion: Tracing particles in backward time

Finding a localized source of particle release based on
later observation of the particles is of interest in several
applications. Such a source-inversion problem appears, for
instance, in locating the source of airborne or waterborne
pollution from the observations of a dispersed pollutant
(Akcelik et al. [1], Boano et al. [6], Badia et al. [3], Katopodes
Chow et al. [11]). In such applications, locating the source
involves approximating the ill-posed backward-time solution of
the appropriate advection–diffusion equation.

Even without diffusion, however, source-inversion for
finite-size particles is challenging. Technically speaking, the
equations of motion (4) are well-posed in backward time: they
have unique solutions with continuous dependence on initial
data. Nevertheless, (4) generates strong exponential growth
with exponent 1/ε for decreasing t . This strong instability leads
to an inevitable and speedy numerical blowup in backward-time
integration.

By contrast, the inertial equation (10) is free from the above
instability, and hence can be solved in backward time without
difficulty. This enables us to recover the starting position x(t0)
of any solution (x(t), v(t)) as follows.

Theorem 2. Let ϕ(t; t0, x0) denote at time t the solution of
the inertial equation (10) that starts from x0 at time t0. Let
(x(t; t0, x0, v0), v(t; t0, x0, v0)) denote at time t the solution of
the full Maxey–Riley equation (3) that starts from (x0, v0) at
time t0. Then for any fixed (x0, v0) and for small enough ε > 0,
we have

|ϕ (t0; t, x(t; t0, x0, v0)) − x0| = O(ε).
Fig. 4. Source inversion for inertial particles using the slow manifold.

In other words, at any time t, we can recover the starting
position x0 of an inertial particle by first projecting the
corresponding solution of (3) onto the slow manifold along the
v direction, then solving the inertial equation (10) backwards
from time t to t0. This procedure leads to a point x̂(t0) =

ϕ (t0; t, x(t; t0, x0, v0)) that is O(ε) close to the starting point
x0 (cf. Fig. 4).

Proof. Our projection onto the slow manifold takes place along
the ( · ,t, x(t)) subspace, i.e., along an unperturbed stable fiber
through the point (x(t; t0, x0, v0), t, v(t; t0, x0, v0)). Therefore,
by the smoothness of fibers in ε, the resulting projected point
p on Mε is O(ε) close to the base point p̂ of the stable
fiber f s

ε ( p̂) that contains (x(t; t0, x0, v0), t, v(t; t0, x0, v0)).
Let q =

(
x̂(t0), v̂(t0)

)
be the point on the slow manifold

that we obtain by following the solution through the point
p from time t backwards to time t0. Note that x̂(t0) =

ϕ (t0; t, x(t; t0, x0, v0)). By the invariance and smoothness of
the stable fiber family, the fiber f s

ε (q) will be O(ε) Cr−1

close to f s
ε (q∗), the fiber containing the initial condition

(x(t0), t0, v(t0)) . Since f s
ε (q∗) is in turn O(ε) Cr−1 close to

an unperturbed stable fiber (the n-dimensional v-plane running
through q∗), we conclude that (x̂(t0), t0), the (x,t)-projection of
q, is O(ε)-close to (x(t0), t0). Therefore, backward-integration
after projection onto the slow manifold recovers the initial
condition of a trajectory with O(ε) error. Note that the initial
velocity v(t0) is not recovered by this procedure. �

6. Special case: Inertial particles in two-dimensional steady
flows

For 0 < ε � 1, all finite-size particle trajectories tend
exponentially fast to the slow manifold. As a result, asymptotic
particle behavior in steady flows is governed by the steady
inertial equation

ẋ = u(x) + εu1(x) + · · · + εr ur (x) +O(εr+1), (13)

where the functions uk defined in (11) are computed from the
steady velocity field u(x).

Eq. (13) is an autonomous ordinary differential equation
(ODE) for the particle trajectory x(s). The qualitative theory
of such ODEs is fairly complete in the two-dimensional case;
this fact leads to powerful general conclusions about the
asymptotics of finite-size particle dynamics in two-dimensional
flows. The results derived below use the inertial equation to
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make specific predictions about inertial particle motion in two-
dimensional steady flows (see also Mograbi and Bar-Ziv [15]
for some general observations about the same subject).

Let us first define the quantity

Q(x, t) =
1
2

(
|Ω(x, t)|2 − |S(x, t)|2

)
, (14)

with |·| denoting the Euclidean matrix norm, and with the
vorticity tensor Ω and the rate-of-strain tensor S defined as

Ω =
1
2

[
∇u − (∇u)T

]
, S =

1
2

[
∇u + (∇u)T

]
. (15)

For later use, we also define a specially weighted average of the
of Q along a closed streamline Γ0 of the velocity field u(x):

I (Γ0) =

∫
Γ0

(2 − 3R) Q
|u|

ds.

Finally, we denote the interior of Γ0 by Int(Γ0).
We note that Q, the second scalar invariant of the velocity

gradient ∇u, is broadly used as an indicator of the stability
of two-dimensional fluid particle motion. Specifically, the
Okubo–Weiss criterion (Okubo [16], Weiss [19]) identifies
Q > 0 regions as elliptic (vortex-type) and Q < 0 regions as
hyperbolic (saddle-type). This classification is based on ad hoc
arguments that can only be justified near stagnation points of
steady flows (Basdevant and Philipovitch [4]); away from such
stagnation points, the criterion has been shown to be incorrect
(Haller and Yuan [9]).

While ill-justified for infinitesimal particle motion, Q turns
out to be a rigorous tool for predicting the asymptotic behavior
of finite-size particles. Specifically, we have the following
result.

Theorem 3. For ε > 0 small enough:

(i) A typical aerosol in a compact steady flow will converge
to a closed curve Γε that is O(ε) C1-close to a closed
streamline Γ0 of u(x). This Γ0 satisfies∫

Int(Γ0)

Q dA = 0,∫
Int(Γ−)

Q dA > 0 >

∫
Int(Γ+)

Q dA
(16)

for all closed streamlines Γ− and Γ+ close enough to Γ0
with the property Int(Γ−) ⊂ Int(Γ0) ⊂ Int(Γ+). If Γ0
contains no fixed points, then Γε is stable limit cycle, and
condition (16) is equivalent to∫

Int(Γ0)

Q dA = 0, I (Γ0) < 0. (17)

(ii) A typical bubble in a compact steady flow will converge to
either a center-type fixed point of (2) or a closed curve Γε

that is O(ε) C1-close to a closed streamline Γ0 of u(x).
This Γ0 satisfies∫

Int(Γ0)

Q dA = 0,∫
Int(Γ−)

Q dA < 0 <

∫
Int(Γ+)

Q dA
(18)
for all closed streamlines Γ− and Γ+ close enough to Γ0
with the property Int(Γ−) ⊂ Int(Γ0) ⊂ Int(Γ+). If Γ0
contains no fixed points, then Γε is a stable limit cycle,
and condition (18) is equivalent to∫

Int(Γ0)

Q dA = 0, I (Γ0) > 0.

(iii) A typical neutrally buoyant particle will converge to a
streamline of u(x).

(iv) A saddle-type fixed point of the two-dimensional steady
velocity field will act as a saddle for any finite-size particle
motion (i.e., for aerosols, bubbles, and neutrally buoyant
particles).

Proof. See the Appendix. �

The term typical in statements (i)–(iii) above is meant to
exclude atypical trajectories that are in the stable manifold of
a saddle fixed point of (10) and hence converge to that saddle.

7. Example: Inertial particles in the unsteady wake of a
cylinder

7.1. Model flow

To illustrate our results, we consider inertial particle motion
in the von Kármán vortex street model of Jung, Tél and
Ziemniak [12]. Finite-size particle motion in this flow has
already been studied numerically by Benczik, Toroczkai and
Tél [5], who showed the existence of attractors for certain
parameter values.

Assuming incompressibility for the vortex street, we have a
stream function for the flow, which Jung, Tél and Ziemniak [12]
assume in the form

Ψ(x, y, t) = f (x, y)g(x, y, t), (19)

with

f (x, y) = 1 − exp

(
−a−1/2

((
x2

+ y2
)1/2

− 1
)2
)

. (20)

This form of f (x, y) ensures the correct no-slip boundary
behavior for the flow at the cylinder surface that satisfies
x2

+ y2
= 1. The coefficient a−1/2 represents the width of the

boundary layer. The factor g in (19) models the contributions
of the shed vortices and the background flow u0 to the full flow.
More specifically,

g(x, y, t) = −wh1(t)g1(x, y, t) + wh2(t)g2(x, y, t)

+ u0 ys(x, y). (21)

The first two terms in (21) describe the alternating creation,
evolution and damping of two vortices of equal strength. The
quantities w and hi (t) represent the overall vortex strength and
amplitudes, respectively. Because of the alternating nature of
the vortices, we have a constant phase difference of half-period
Tc/2 between the strength of the two vortices, i.e. h2(t) =

h1 (t − Tc/2) . To describe the time evolution of the vortex
strengths, we choose

h1(t) = |sin (π t/Tc)| . (22)
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Fig. 5. Streamlines of the model flow at t = 0.4.

The vortex centers are assumed to move parallel to the x-axis
at a constant speed, satisfying

x1(t) = 1 + L [(t/Tc) mod1] , x2(t) = x1 (t − Tc/2) ,

y1(t) = −y2(t) ≡ y0.

The shape of the shed vortices is controlled by the factor

gi (x, y, t) = exp
(
−R0

[
(x − xi (t))

2
+ α2(y − yi (t))

2
])

,

where R1/2
0 is the characteristic vortex size, and α is an aspect

ratio parameter.
Finally, the last term in Eq. (21) represents the contribution

of the background flow of uniform velocity u0. The factor
s (x, t) is introduced in order to simulate the shielding of the
background flow just behind the cylinder; it is taken to be of the
form

s(x, y) = 1 − exp
(
−(x − 1)2/α2

− y2
)

.

As in Jung, Tél and Ziemniak [12], we choose a set of
parameters for which the model has been shown to approximate
the Navier–Stokes solution for this geometry with Re ≈ 250.
More specifically, we set the nondimensional parameter values
α = 2, R0 = 0.35, L = 2, a = 1 and y0 = 2. For the
background flow velocity, we choose u0 = 14/Tc, while the
average strength of the vortices is taken to be w = 8 × 24/π

as in Benczik, Toroczkai and Tél [5]. As shown by Jung, Tél
and Ziemniak [12], the above set of parameters leads to a flow
period of Tc = 1.107. We show a representative snapshot of the
corresponding flow in Fig. 5.

7.2. Slow-manifold in the model flow

Here we show that the inertial equation (10) indeed gives
the correct asymptotic motion of finite-size particles in this
example. For particles, we choose bubbles with R = 1.55 and
ε = 0.01. Gravity is ignored in the model (g = 0). First, we
solve the full four-dimensional Maxey–Riley equation (3) on
the time interval [0, 1.12] using a fourth-order Runge–Kutta
algorithm with absolute integration tolerance 10−7. We release
several bubbles with their initial spatial location taken from the
grey circle shown in Fig. 6. The initial velocities of all particles
were taken much larger in absolute value than the velocities
corresponding to the same initial location on the slow manifold.
In the same figure, we also show the projection of the four-
dimensional solution of (3) onto the x = (x, y) plane. Note that
all bubbles converge to the same attracting fluid trajectory.
Fig. 6. Simulated bubble motion in the full Maxey–Riley equations.

Fig. 7. Simulated bubble motion in the truncated inertial equation (12).

By contrast, Fig. 7 shows the dynamics on the slow
manifold Mε . To generate this picture, we used the same
initial bubble locations on Mε to solve the truncated inertial
equation (12) over the same time interval. Over an initial
period of exponentially fast decay to Mε , the trajectories and
their projections on the slow manifold only show qualitative
similarities; the details of their geometries differ, especially
while they pass through a moving vortex behind the cylinder.
This is not surprising: even two very close initial positions on
the slow manifold will generate noticeably different trajectories
in regions with sensitive dependence on initial conditions.

In the present example, however, there exists a downstream
moving attractor on the slow manifold (cf. Fig. 7). This attractor
is a distinguished fluid trajectory that attracts all nearby
inertial trajectories and hence ultimately eliminates sensitive
dependence on initial conditions. Fig. 6 shows that solutions
of the full Maxey–Riley equation also cluster around this time-
varying attractor. By working on the slow manifold, we have
reduced the dimension of the particle tracking problem from
four to two, still reproducing the same asymptotic clustering
behavior seen in the full Maxey–Riley equation.

Both in Figs. 6 and 7, we use color to indicate the
instantaneous leading-order geometry of the slow manifold (6)
at time T = 1.2. Specifically, colors ranging from dark blue to
dark red indicate increasing values of |v| = |u(x, T )| , which is
a measure of the “height” of the slow manifold at leading order
in the (x, v) coordinate space.
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Fig. 8. Bubbles released and advected under the full Maxey–Riley equation
(red curves). Particles with the same initial condition released and advected on
the first-order approximation of the slow manifold under the truncated inertial
equation (black curves). Both the cylinder and the approximate slow manifold
are shown in the (x, y, |v|) space. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Final dispersed positions of the full particle trajectories (red curves) and
of their projections on the slow manifold (black curves). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

7.3. Source inversion in the model flow

We now illustrate the use of the truncated inertial equation
(12) in identifying initial positions of dispersed finite-size
particles. Again, for particles, we choose bubbles with R =

1.55 and ε = 0.01. We launch a set of of particles and track
them using the full Maxey–Riley equation; we also track the
evolution of the projected initial locations of the particles on
the slow manifold. Once the particles have dispersed, we stop
them and attempt to trace them back to their initial conditions
by integrating the Maxey–Riley equation and the truncated
inertial equations, respectively, in backward time (the maximal
integration error tolerance is again 10−7 in the fourth-order
Runge–Kutta scheme we use).

Almost immediately, the backward computations for the full
Maxey–Riley equation blow up due to the numerical instability
caused by the −v/ε term. By contrast, the inertial equation
on the slow manifold leads us back to the initial locations of
the released particles. All this is documented in Figs. 8–10,
where we track the forward and backward integration projected
from the four-dimensional phase space of Eq. (3) to the space
(x, y, |v|); we also graph the cylinder and the approximate slow
manifold at select times.
Fig. 10. Backward integration from the final dispersed positions. The full
Maxey–Riley trajectories quickly blow up (red curves), while the truncated
inertial equations on the slow manifold yield a correct approximation for the
initial bubble locations (black curves). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

8. Conclusions

In this paper, we have described a way to reduce the
Maxey–Riley equation to a slow manifold that captures the
asymptotics of inertial particle dynamics. The slow manifold
arises in a singular perturbation approach that is valid for small
particle Stokes numbers. We treat general unsteady flows, as
opposed to earlier applications of singular perturbation theory
in this context that were restricted to concrete steady flows.

Our main result is an explicit inertial equation for motions on
the slow manifold. For small enough Stokes numbers, particles
approach trajectories of this inertial equation exponentially fast.
It is therefore enough to understand the asymptotic features of
the inertial equation to understand the asymptotics of finite-size
particle motion. We have also shown that the inertial equation
can be used to tackle the numerically ill-posed problem of
source inversion. Finally, we have obtained a full classification
of possible asymptotic features of particle motion in steady
two-dimensional flows. The classification is based on the
Okubo–Weiss parameter Q, which (surprisingly) becomes a
mathematically exact predictive tool once particles are not
infinitesimally small. Specifically, we have derived formulae
involving Q that predict the locations of particle clustering at
points or along limit cycles.

We have illustrated the forward- and backward-time use of
the inertial equation on the vortex-shedding model of Jung, Tél
and Ziemniak [12]. Specifically, we have verified the accuracy
of the slow-manifold approximation in forward time, and that
of our proposed source-inversion technique in backward time.

Extension of our results on steady inertial motion from two
to three-dimensions would be challenging since even three-
dimensional steady flows can be nonintegrable. A natural
candidate class for the extension is nondegenerate steady Euler
flows that are known to be integrable. A further question of
interest is how the stability of the slow manifold changes as
the Stokes number is increased. Initial results in this direction
for neutrally buoyant particles appear in the works of Babiano
et al. [2] and Vilela et al. [20]. Specific results on instabilities
along the slow manifold will appear in Sapsis and Haller [18].
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Appendix. Proof of Theorem 3

A.1. Volume evolution in the inertial equation

For later use, we first compute the change of an infinitesimal
volume V (t) along a solution x(t) of (12). By Liouville’s
theorem, the volume V (t) satisfies

V (t) = V (t0) exp

{∫ t

t0
∇ ·

[
u(x, s)

+ ε

(
3R

2
− 1

)[
Du(x, s)

Dt
− g

]]
x=x(s)

ds

}
(24)

for any choice of the initial time t0. In evaluating the above
expression, we assume that the fluid flow is incompressible,
which implies

∇ · u = 0,

∇ ·
∂u
∂t

=
∂

∂t
∇ · u = 0,

∇ · [(∇u)u] = Trace[∇u∇u] = −2Q, (25)

∇ · u1
= ∇ ·

(
3R

2
− 1

)[
Du(x, s)

Dt
− g

]
= (2 − 3R) Q,

with Q defined in (14). Using (25), we rewrite the volume
evolution formula (24) as

V (t) = V (t0) exp
{
ε (2 − 3R)

∫ t

t0
Q(x(s), s)ds

}
. (26)

A.2. Fixed points of the inertial equation

As a general rule for steady flows, fixed points of the velocity
field u(x) are also fixed points of the inertial equation (10). This
can be concluded from (11) by noting that u(x0) = 0 implies
uk(x0) = 0 for all k ≥ 1. Also note that for small enough ε > 0,
a center-type fixed point of u becomes a center or a spiral of the
inertial equation, because the right-hand-side of (10) is a small
perturbation of u. For the same reason, a saddle-type fixed point
of u is a saddle-type fixed point of (10) for small ε > 0, which
proves the statement (iv) of Theorem 3.

To identify the stability of a spiral-type fixed point
perturbing from a center-type fixed point of u, we first recall
that Q > 0 holds at elliptic fixed points (centers) of u. If
x(s) ≡ x0 is a fixed point of the inertial equation, the time
evolution of a infinitesimal volume V (t0) based at x0 can be
computed from (26) as

V (t) = V (t0) exp {ε (2 − 3R) Q(x0) (t − t0)} .

Therefore, if x0 is an elliptic fixed point of u(x) (i.e., Q > 0),
then V (t) grows for aerosols (2 − 3R > 0), and shrinks for
bubbles (2 − 3R < 0). For neutrally buoyant particles, the
perturbation terms to u on the right-hand side of (10) are all
zero, therefore a center for u will remain a center for the inertial
equation in the neutrally buoyant case. In summary: center of a
two-dimensional steady velocity field will act as a source for
aerosols, as a sink for bubbles, and as a center for neutrally
buoyant particles.

A.3. Asymptotic dynamics on the slow manifold

Assume now that the steady velocity field u(x) is defined
on a compact two-dimensional planar domain or on a two-
dimensional surface diffeomorphic to a sphere. Then, the slow
manifold Mε , as a smooth graph over the domain of definition
of u(x), is also a compact two-dimensional invariant manifold
(with or without boundary). Applying the Poincaré–Bendixson
theorem to Mε , we conclude that all trajectories of (10) tend to
a limit cycle, a fixed point, or to a set formed by fixed points
and homoclinic or heteroclinic orbits connecting those fixed
points. Since heteroclinic and homoclinic orbits are structurally
unstable, we conclude that non-neutrally-buoyant particles in
generic compact flows tend to fixed points or limit cycles.

Combining this last observation with the discussion above
on fixed points of the inertial equation, we obtain the following
conclusions:

A.3.1. Aerosols
Aerosols cannot cluster around fixed points: as we have seen

above, fixed points for aerosol dynamics are unstable spirals
or saddles, neither of which can create clustering. As a result,
aerosols will cluster around closed curves Sε that are either
limit cycles, or connected sets composed of some combination
of fixed points, homoclinic orbits, and heteroclinic orbits. For
ε > 0 small enough, such a closed curve Γε is O (ε) C1-closed
to a closed streamline Γ0 of the velocity field u(x).

The phase-space volume bounded by Γε does not change in
time, therefore∫

Int(Γε)

∇ ·

[
u(x) + εu1(x) + · · · + εr ur (x) +O(εr+1)

]
dV

= ε

∫
Int(Γε)

∇ ·

[
u1(x) + · · · + εr−1ur (x) +O(εr )

]
dV = 0.

Dividing by ε, taking the ε → 0 limit, and using the last
equation in (25), we obtain that∫

Int(Γ0)

Q dV = 0

must hold for the compact streamline Γ0 of u(x). The closed
curve Γε is an attractor if the areas of closed streamlines of
u(x) inside Γ0 increase under the flow of the inertial equation,
and the areas of closed streamlines of u(x) outside Γ0 decrease
under the flow of the inertial equation. This is the case (by (26))
if∫

Int(Γ−)

Q dV > 0 >

∫
Int(Γ+)

Q dV



582 G. Haller, T. Sapsis / Physica D 237 (2008) 573–583
for all closed streamlines Γ− and Γ+ of u(x) that are close
enough to Γ0 and satisfy Int(Γ−) ⊂ Int(Γ0) ⊂ Int(Γ+). This
proves formula (16).

Assume now that Γε is a nondegenerate (i.e., exponentially
attracting or repelling) limit cycle of the inertial equation. We
recall from Haller and Iacono [10] that in coordinates tangent
and normal to Γε , the fundamental matrix solution for the
linearized flow along Γε can be written as

Ψ(t, t0) =

e
∫ t

t0
S‖(τ )dτ

∫ t

t0
e
∫ t

s S‖(τ )dτ e
∫ s

t0
[−S‖(τ )+δ(τ )]dτ

a(s)ds

0 e
∫ t

t0
[−S‖(τ )+δ(τ )]dτ

 ,

(27)

where

v = u + ε

(
3R

2
− 1

)[
Du
Dt

− g
]

+O(ε2), (28)

S‖ =
1
2

(
v,
[
∇v + (∇v)T ] v

)
|v|

2

∣∣∣∣∣
x=x(t,x0)

,

δ(t) = ∇ · v|x=x(t,x0)
,

with x(t, x0) denoting a T -periodic solution on Γε . As shown
in Haller and Iacono [10], the parallel strain rate S‖ satisfies∫ T

0
S‖(t)dt = 0 (29)

along any T -periodic closed orbit of v.
By (27), under one period, infinitesimal perturbations

initially orthogonal to Γε grow in the direction normal to Γε

by the factor

e
∫ T

0 [−S‖(τ )+δ(τ )]dτ
= e

∫ T
0 δ(t)dt

= e
∫ T

0 ∇·v|x=x(t,x0)dt
, (30)

where we used (28) and (29). Now, for small ε, we can write
x(t, x0) = x̄(t, x0)+εx̂(t, x0; ε) and T = T̄ +εT̂ where x̄(t, x0)

in an unperturbed periodic solution of period T̄ on Γ0. By (24)
and (25), we then have∫ T

0
∇ · v|x=x(t,x0)

dt =

∫ T

0
∇ ·

[
u(x)

+ ε

(
3R

2
− 1

)
Du(x)

Dt
+O(ε2)

]
x=x(t,x0)

dt

= ε

(
3R

2
− 1

)∫ T

0
∇ ·

[
Du(x)

Dt

]
x=x(t,x0)

dt +O(ε2)

= ε (2 − 3R)

∫ T

0
Q (x(t, x0)) dt +O(ε2)

= ε (2 − 3R)

∫ T̄

0
Q (x̄(t, x0)) dt +O(ε2). (31)

Since the arclength s along the closed streamline Γ0 satisfies
ds/dt = |u(x̄(t))| , we finally obtain from (31) the relation∫ T

0
∇ · v|x=x(t,x0)

dt = ε

∫
Γ0

(2 − 3R) Q
|u|

ds +O(ε2). (32)
We conclude that by (30) and (32), the stability of Γε is
determined by the integral

I (Γ0) =

∫
Γ0

(2 − 3R) Q
|u|

ds

along Γ0 for small enough ε. Specifically, Γε is attracting for
I (Γ0) < 0, which proves formula (17), and hence completes
the proof of (i) of Theorem 3.

A.3.2. Bubbles
Based on our earlier discussion on fixed points, bubbles will

either cluster around center-type fixed points of u(x), or around
a closed curve Γε that is O (ε) C1-close to a closed streamline
Γ0 of u(x). Repeating the above proof for bubbles (2−3R < 0),
we obtain statement (ii) of Theorem 3.

A.3.3. Neutrally buoyant particles
Neutrally buoyant particle dynamics on the slow manifold

is governed by the area-preserving inertial equation ẋ = u(x).
Therefore, typical neutrally buoyant particles will not converge
to fixed points or limit cycles; rather, for small enough ε > 0,
such particles will approach streamlines of u(x) exponentially
fast. This proves statement (iii) of Theorem 3.
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