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a b s t r a c t

This brief note corrects a minor error in the statement of the main result in Haller (2011) [1] on a
variational approach to Lagrangian coherent structures. We also show that the corrected formulation
leads to a substantial simplification of LCS criteria for two-dimensional flows.

© 2011 Elsevier B.V. All rights reserved.
1. The set-up and notation

We first recall the set-up and the main definitions from [1].
Consider the dynamical system

ẋ = v(x, t), x ∈ U ⊂ Rn, t ∈ [α, β], (1)

whereU is an open, bounded subset ofRn, [α, β] ⊂ R is a bounded
time interval and v : U × [α, β] → Rn is a class C3 vector field in
its arguments.

Let x(t, t0, x0) denote a trajectory of (1) passing the point x0 ∈

U at time t0 ∈ [α, β]. The flow map Ftt0(x0) takes an initial
condition x0 to its position at time t , i.e.,

Ftt0 : U → U,

x0 → x(t, t0, x0).

The Cauchy–Green strain tensor field associatedwith the flowmap
is defined as

Ct0+T
t0 (x0) =


∇Ft0+T

t0 (x0)
∗

∇Ft0+T
t0 (x0), (2)

where ∇Ft0+T
t0 is the Jacobian of the flow map, and the star refers

tomatrix transposition. The eigenvalues λi and corresponding unit
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eigenvectors ξi of the symmetric, positive definite tensor Ct0+T
t0 are

defined by the relations

Ct0+T
t0 (x0)ξi(x0, t0, T ) = λi(x0, t0, T )ξi(x0, t0, T ),

|ξi(x0, t0, T )| = 1, i = 1, 2, . . . , n,
0 < λ1(x0, t0, T ) ≤ λ2(x0, t0, T ) ≤ · · · ≤ λn(x0, t0, T ).

1.1. LCS as special material surfaces

Consider a smooth curve M(t0) at time t0, which is advected
by the flow map into a time-evolving material surface M(t) =

F t
t0(M(t0)). For eachpointx0 ∈ M(t0), wedenote the tangent space
of the initial material curve by Tx0M(t0), and its normal space by
Nx0M(t0).

As argued in [1], over a time interval of length T , an initially
normal unit perturbation n0 ∈ Nx0M(t0) is advected by the
linearized flow map into the vector ∇Ft0+T

t0 (x0)n0. The surface-
normal component of this advected vector is given by the normal
repulsion rate

ρ
t0+T
t0 (x0,n0) =


nt , ∇Ft0+T

t0 (x0)n0


, (3)

wherent is a unit vector normal toM(t) at the point xt . The normal
repulsion rate can be expressed in terms of the Cauchy–Green
strain tensor as

ρ
t0+T
t0 (x0,n0) =

1
n0,


Ct0+T
t0 (x0)

−1
n0

 . (4)
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Normally repelling material lines are defined in [1] as compact
material lines on which ρ

t0+T
t0 (x0,n0) > 1 holds, and the normal

repulsion rate ρ
t0+T
t0 (x0,n0) dominates any growth of tangent

vectors in Tx0M(t0) under the linearized flow map ∇Ft0+T
t0 (x0).

As proved in [1], for large T values, normally repelling material
surfaces are rare and tightly packed: if one exists at a point x0, then
it must be exponentially close to the subspace spanned by the first
n− 1 eigenvectors of the Cauchy–Green strain tensor. Out of these
rare surfaces, the variational theory of LCS seeks those exceptional
ones that repel nearby trajectories at locally the highest rate in
the flow. To characterize such material surfaces, we recall the
following definitions from [1]:

Definition 1 (Hyperbolic Weak LCS). Consider a compact normally
repellingmaterial surfaceM(t) ∈ U .We callM(t) a repellingweak
LCS (WLCS) over [t0, t0 + T ] if its normal repulsion rate admits
stationary values along M(t0) among all locally C1-close material
surfaces. We call M(t) an attracting WLCS over [t0, t0 + T ] if it is
a repelling WLCS over [t0, t0 + T ] in backward time. Finally, we
call M(t) a hyperbolic WLCS over [t0, t0 + T ] if it is a repelling or
attracting WLCS over the same time interval.

Definition 2 (Hyperbolic LCS). Consider a compact, normally re-
pelling material surface M(t) ∈ U . We call M(t) a repelling LCS
over [t0, t0 + T ] if its normal repulsion rate admits a pointwise
non-degenerate maximum along M(t0) among all locally C1-close
material surfaces. We call M(t) an attracting LCS over [t0, t0 + T ]

if it is a repelling LCS over [t0, t0 + T ] in backward time. Finally,
we call M(t) a hyperbolic LCS over [t0, t0 + T ] if it is a repelling or
attracting LCS over the same time interval.

1.2. The existence theorem for LCS

We now re-state themain existence result, Theorem 7, from [1]
with a slight correction.

Theorem 1 (Sufficient and Necessary Conditions for WLCS and
LCS). Consider a compactmaterial surfaceM(t) ⊂ U over the interval
[t0, t0 + T ]. Then:

(i) M(t) is a repelling weak LCS (WLCS) over [t0, t0 + T ] if and only
if all the following hold for all x0 ∈ M(t0):
1. λn−1(x0, t0, T ) ≠ λn(x0, t0, T ) > 1;
2. ξn(x0, t0, T ) ⊥ Tx0M(t0);
3. ⟨∇λn(x0, t0, T ), ξn(x0, t0, T )⟩ = 0.

(ii) M(t) is a repelling LCS over [t0, t0 + T ] if and only if:
1. M(t) is a repelling WLCS over [t0, t0 + T ];
2. The matrix L(x0, t0, T ) is positive definite for all x0 ∈ M(t0)

with the definition given in Box I.

Proof. This theorem is stated and proved in an almost identical
form in [1]. The only difference in the present re-statement is the
form of the diagonal terms 2 λn−λ1

λ1λn
of the matrix L defined in (5),

which are listed incorrectly in [1] as 2λn−λ1
λ1λn

. Here we only outline
the corrections to the proof, and refer the reader to [1] for the full
proof.

The correct form of eq. 52 in [1] is

[C−1
ij,kn

i
ϵn

j
ϵ(x

k
ϵ)

′
+ 2C−1

ij (ni
ϵ)

′nj
ϵ]

′

ϵ=0 = · · ·

= α2C−1
ij,klξ

i
nξ

j
nξ

k
nξ

l
n − 4αα,pC−1

ij,k e
i
pξ

j
nξ

k
n

+ 4C−1
ij


−

1
2
α,pα,pξ

i
n − αξ k

n,pβ
keip


ξ j
n + 2α,pα,qC−1

ij eipe
j
q

= α2C−1
ij,klξ

i
nξ

j
nξ

k
nξ

l
n − 4αα,pC−1

ij,k ξ
i
pξ

j
nξ

k
n

− 2
α,pα,p

λn
−

4α
λn

ξ k
n,pβ

kξ i
pξ

i
n + 2

α,pα,p

λp

= α2C−1
ij,klξ

i
nξ

j
nξ

k
nξ

l
n − 4αα,pC−1

ij,k ξ
i
pξ

j
nξ

k
n

+ α,pα,p

[
2
λp

−
2
λn

]
,

where we have highlighted the corrected coefficients in boldface.
As a result, in equations (31) and (53) of [1], the diagonal terms of
the matrix L (except the first one) will change to

2
λn − λp

λpλn
,

as stated in the present theorem. �

2. The case of two-dimensional flows

Following the argument of Tang et al. [2], we now show that the
corrected condition (ii)/2 of Theorem 1 can be simplified signifi-
cantly in the case of two-dimensional flows. We use the following
result from [1]:

Lemma 1. At each point of a WLCS the following identity holds:

∇
2C−1

[ξn, ξn, ξn, ξn] = −
1
λ2
n


ξn, ∇

2λnξn


+ 2
n−1−
q=1

λn − λq

λnλq


ξq, ∇ξnξn

2
. (6)

Proof. See Theorem 7 in [1] for a proof. �

Applying this lemma to two-dimensional flows, we obtain the
following result.

Theorem 2 (Sufficient and Necessary Conditions forWLCS and LCS in
Two Dimensions). Consider a compact material line M(t) ⊂ U over
the interval [t0, t0 + T ]. Then:

(i) M(t) is a repelling weak LCS (WLCS) over [t0, t0 + T ] if and only
if all the following hold for all x0 ∈ M(t0):
1. λ1(x0, t0, T ) ≠ λ2(x0, t0, T ) > 1;
2. ξ2(x0, t0, T ) ⊥ Tx0M(t0);
3. ⟨∇λ2(x0, t0, T ), ξ2(x0, t0, T )⟩ = 0.

(ii) M(t) is a repelling LCS over [t0, t0 + T ] if and only if:
1. M(t) is a repelling WLCS over [t0, t0 + T ];

2.

ξ2, ∇

2λ2ξ2

< 0.

Proof. We only need to show that condition (ii)/2 of the present
theorem is equivalent to condition (ii)/2 of Theorem 1. By
Sylvester’s theorem, the matrix L(x0, t0, T ) defined in Theorem 1
is positive definite if and only if all the leading principal minors
of L are positive. In the case of n = 2, this amounts to the two
requirements

∇
2C−1

[ξ2, ξ2, ξ2, ξ2] > 0, (7a)

det L > 0. (7b)

By Lemma 1, the inequality (7a) is equivalent to
ξ1, ∇ξ2ξ2

2
>

λ1

2(λ2 − λ1)λ2


ξ2, ∇

2λ2ξ2

. (8)

Again by Lemma1 and a straightforward calculation, the inequality
(7b) is equivalent to

−2
λ2 − λ1

λ1λ
3
2


ξ2, ∇

2λ2ξ2

> 0.

Since 0 < λ1 ≤ λ2, this last inequality is in turn equivalent to
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5)
L(x0, t0, T ) =



∇
2C−1

[ξn, ξn, ξn, ξn] 2
λn − λ1

λ1λn
⟨ξ1, ∇ξnξn⟩ · · · 2

λn − λn−1

λn−1λn
⟨ξn−1, ∇ξnξn⟩

2
λn − λ1

λ1λn
⟨ξ1, ∇ξnξn⟩ 2

λn − λ1

λ1λn
· · · 0

...
...

. . .
...

2
λn − λn−1

λn−1λn
⟨ξn−1, ∇ξnξn⟩ 0 · · · 2

λn − λn−1

λn−1λn


(

Box I.
Fig. 1. (a) The forward-time FTLE field for the forced Duffing Eq. (10) with ϵ = 0.3 and ω = 1. The rectangle marks a trench of the FTLE field. (b) A close-up of the area
marked by the rectangle in part (a). The sets Lw (black dots) and L (red squares) are shown. The red curves correspond to the material lines that qualify as LCS through the
incorrect matrix Lw . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ξ2, ∇

2λ2ξ2

< 0. (9)

Now, since

ξ1, ∇ξ2ξ2

2
≥ 0, inequality (8) follows from inequality

(9). Hence, L being positive definite is equivalent to (9). �

3. An example

In this section, we demonstrate that the incorrect form of the
matrix L(x0, t0, T ) given in [1] may identify some non-hyperbolic
material lines as hyperbolic LCS, while the corrected form (5) rules
out such non-hyperbolic material lines.

Consider the periodically forced Duffing equation given by

ẍ − x + x3 = ϵ cos(ωt) (10)

with ϵ = 0.3 and ω = 1. The geometry of the stable and unstable
manifolds of this system is well known (see, e.g., [3]). As shown in,
e.g., [4], for large enough integration times T , compact subsets of
the stablemanifold are repelling LCS that are closely approximated
by the ridges of the finite-time Lyapunov exponent (FTLE) field

Λ
t0+T
t0 (x0) =

1
2|T |

log λ2(x0, t0, T ). (11)

The FTLE field for the system (10) is shown in Fig. 1a for T = 3π .
Denote the incorrect form of thematrix L given in [1] by Lw , and

the correct form given in (5) above by L. Furthermore, define Lw

and L as the sets of points where Lw and L are positive definite,
respectively.
Fig. 1b shows a close-up of a trench of the FTLE field together
with the sets L (red squares) and Lw (black dots). Note that the
set L appears as a subset of Lw . The red curves in Fig. 1b are
chosen everywhere orthogonal to the second eigenvector ξ2 of the
Cauchy–Green strain tensor, and hence satisfy condition (i)/2 of
Theorem 1. The remaining conditions of part (i) of the theorem
are also satisfied at each point of these curves, with condition (i)/3
relaxed to the inequality |⟨∇λ2, ξ2⟩| < 0.1 to accommodate LCS
of finite thickness (see Haller [1] and Farazmand and Haller [5]).
Hence, if the incorrect matrix Lw is used in checking the condition
(ii)/2 of Theorem 1, these curves qualify as repelling LCS.

However, a trench of the FTLE field indicates material lines that
repel other material lines at locally the weakest rate, and hence
cannot be LCS. The correct form (5) of the matrix L does indeed
exclude such material lines from the set of admissible hyperbolic
LCS since they do not intersect the set L.
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