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Abstract 

We study n-degree-of-freedom, nearly integrable Hamiltonian systems near the intersection of a stronger and a weaker 
resonance. We construct motions that cross the weaker resonance along the stronger one at a speed larger than that of Arnold 
diffusion. We also derive estimates for the measure of such solutions. 

1. Introduction 

In this note we consider nearly integrable, n-degree- 

of-freedom Hamiltonian systems of the form 

H(~,#GE) = Ho(l) +EHI(I,&E), (1) 

where (I, 4) E R” x T” are action-angle variables 
with II > 3, 0 < e < 1 is a small parameter, and HO 
and H1 are analytic functions. It is well known that the 
unperturbed flow generated by the Hamiltonian Ho is 
completely integrable with the n independent integrals 

II,. . . , I,. The phase space of this integrable system 
is foliated by n-dimensional invariant tori of the form 
I = const. The KAM theorem [ l] states that in the 
generic case most of these tori survive in the perturbed 
system. The surviving tori are precisely those that are 
sufficiently well separated from the resonance web, 

W = {I c U((D/Ho(I),k) =O, k E Z”}. (2) 

For two-degiee-of-freedom systems that satisfy the 
condition of isoenergetic nondegeneracy [ 11, the 
KAM theory actually guarantees that all motions on 
each three-dimensional energy surface HO = const 

are either quasiperiodic or remain trapped forever 

between two adjacent surviving two-tori. However, if 
n 2 3, the surviving tori do not serve as barriers to 

nonquasiperiodic motions and large changes in the 
initial action values become possible for trajectories 
that traverse in a neighborhood of the resonance web 

W. 
In his famous paper [ 21, Arnold sketched an ex- 

ample of a nearly integrable system which exhibits an 
0( 1) variation in the action values even in the limit 
E + 0. He proposed that the fundamental mecha- 

nism for such an evolution is provided by the trans- 
verse intersection of stable and unstable manifolds (or 
“whiskers”) of a chain of lower dimensional invariant 

tori that is created in the destruction of unperturbed 
n-tori along a given resonance. This phenomenon has 
become known as Arnold diffztsion, and it is believed 
to be the underlying cause for long-time instability in 
multi-degree-of-freedom Hamiltonian systems [ 3,4]. 
By Nekhorosev’s theorem [ 11, the average speed of 
this diffusion is necessarily exponentially small in the 
generic case. 

Although in the physics literature the existence 
of Arnold diffusion is sometimes treated as a fact, 
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the mathematical details of Arnold’s example are 
still not fully understood [S]. Recently, in an im- 

portant paper [ 61, Chierchia and Gallavotti clarified 
the details of the construction of transition chains of 

tori for a special class of problems that involves the 
D’Alembert precession-nutation model. At the same 

time, their work further emphasized the fact (see 
also Ref. [ 51) that the general picture of diffusion 

proposed by Arnold can be justified only away from 
multiple resonances or resonance junctions. Since in 

systems with at least three-degrees-of-freedom mul- 
tiple resonances form a dense subset of the action 
space, their role cannot be ignored [ 71. There is also 

increasing numerical evidence [8] (see also Refs. 
[3,4]) for symplectic maps, that the speed of dif- 

fusion of the action variables becomes much larger 

near resonance junctions than that of Arnold diffusion 
along single resonances. In particular, a characteristic 
cross-resonance diffusion appears to happen on time 
scales much shorter than exponential and it curiously 
involves higher order resonances which are usually 

believed to be less significant [ 81. 

In this paper, motivated by the above numerical ob- 
servations by Laskar, we study the geometry and dy- 
namics near a multiplicity two resonance in the phase 

space under the assumption that one of the two reso- 
nances is weaker than the other one. However, our re- 

sults can easily be extended to the intersection of two 
nearly equally strong resonances provided the pertur- 

bation contains one of the resonant harmonics with 

much smaller amplitude than the other. This latter case 
is a generalization of the example studied by Benettin 

and Gallavotti [ 91. 

The key observation in our study is that weak- 
strong resonance junctions admit a near-integrable dy- 

namics which enables one to study details of their ge- 
ometry. In particular, we describe how motions pass 
through the weaker resonance guided by the stronger 
resonance. This passage happens on a weakly hy- 
perbolic invariant manifold of (II - 1 )-dimensional 

whiskered tori. We establish an order 0( I/& upper 

estimate for the time of the passage which shows that 
cross-resonance diffusion is indeed much faster than 

the exponentially slow Arnold diffusion. Using a re- 
sult of Fenichel [ 111 from geometric singular pertur- 
bation theory. we extend the same result for an open 
set around the original set of (n - 1 )-tori. It turns out 
that the measure of this set can be taken algebraic in 

the perturbation parameter E. We conclude the paper 
by comparing diffusion near weak-strong resonance 
junctions to Arnold diffusion and describing some fur- 

ther results on a special type of chaotic dynamics near 

multiple resonances. For full proofs and more details 
of the present results, the reader is referred~ to Ref. 

[ 1 l] where the intersection of more than two reso- 
nances is also treated. 

2. Normal form for weak-strong resonande 
junctions 

Throughout this paper we shall assume Ithat for 
some fixed constant c > 0, the complex ektension 

Hi (I, 2; E) of the Hamiltonian Hi is analytic in the 
domain ]Im zi] < g of the 2n-dimensional complex 

space C”, and for some bounded set S c KY, 

sup IHII < K, 
/ES. Ilm -_,I+ 

holds with an appropriate positive constant K,+ and for 

E sufficiently small. We shall also need the Fourier 
expansion of HI, which can be written in the form 

HI(~,&E) = c hk(l;e)exp(i(k,4)). 
kEZ” 

Our basic assumption is that the frequencies of the 

unperturbed Hamiltonian Ho satisfy precisely two in- 
dependent resonance relationships at some point I’ of 

the action space, i.e., there exist two linearly lindepen- 
dent integer vectors I,m E Z” such that 

(Z,D,Ho(l’)) = (m,D,Ho(l’)) =O. 

We assume that the first resonance is “forced” by the 
perturbation at leading order, i.e., inf,,s (h/j I; 0) ( > 
CO > 0. We denote the resonant module generated by 
the vectors 1 and m by M, i.e., we let 

Let rl E M be a “minimal” element of the module M, 

i.e., an integer vector with the property that for any 
k E M, (kl > Jr,\ holds. Also, let r2 be an eiement of 
M which is linearly independent of r 1 and its modulus 
is minimal among all elements of M that are linearly 
independent of r-1. Then, it is always possible to find 
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linearly independent integer vectors ~-3,. . . , r, such 
that for the n x n matrix 

we have det T = 1 [ 1,9]. We then introduce the change 

of variables [ I ] 

$=Tqb, ,/‘d=(T’)-‘(I-Z’), (3) 

which is only canonical up to the factor J;, thus 
we have to divide the transformed Hamiltonian H = 
Ha + l Ht by this factor to preserve the correspond- 
ing Hamiltonian equations. Then Taylor expanding the 

resealed Ha and Hi at the resonant action value IT and 
dropping the constant Ha(Z’)/& gives the expres- 

sions 

Ho(J; ~1 = (TD,Ho(Z’), J) 

+ i& (.Z,TDfHo(Z’)TrJ) +0(e), 

J;HI(J,&E) = J; C K,exp[i(p,(&,+z))] 
lJEz= 

+ C hAEO)exp(i(ktCr)) +O(J;)), 
kEZ” -M / 

where &,, = hk(Z’;O) whenever k =plrl +p2r2 (here 

p; denotes the jth element of the integer vector p E 

Z2). Note that we separated the resonant and nonres- 

onant combinations of the phases in the expression of 
H. As a result, the first sum in the above expression 
only depends on the slow angles ghl and $2, whereas 

all harmonics in the second sum do depend explic- 
itly on integer multiples of thefast angles es,. . . , t+bn 
and hence have zero averages with respect to these 
variables. Since, by our original assumption, the fre- 
quencies corresponding to these fast angles do not sat- 
isfy any resonance relationship in a neighborhood of 
the point J E 0, the method of multi-phase averag- 

ing [ 121 guarantees the existence of a near-identity, 
canonical change of variables that transforms the ex- 
plicit fast angle dependence of H to terms of order 
O(E). In fact, in a small but fixed neighborhood of 
J = 0 further higher order averaging transformations 

can be constructed which push the fast angle depen- 
dence of HI to terms that are exponentially small in 
E [ 9,131. Thus, splitting our slow and fast variables 
into the new variables 

B=(J;J3>...,hJnL P=($3 ,... ,+n), 

and retaining the same notation for B and p after 

performing the averaging transformations, we obtain 
the normal form Hamiltonian 

H(A,a,B,P;e) = J;(U) 

+&U&&M +J;fh(AwB;fi)l 

+ed’H3(A,cr,B,P;&), (4) 

with 

H,,,d(A,a) = i&PA) + c &exp(i(p,cu)). 
/G? 

(5) 

Here b E lRT2 contains the last II - 2 elements of the 
vector TDfHo(Z’), the symmetric matrix P E R2x2 

is the first 2 x 2 minor of the matrix TDFHo(Z’)T’, 
the functions H2 and H3 are analytic in their argu- 
ments, c > 0 is an appropriate constant and Hpend is 

the well-know pendulum-type Hamiltonian. The new 
symplectic form corresponding to this Hamiltonian is 
w = da A dA + J;dPA dB, hence the (p, B) equa- 
tions in the associated Hamiltonian vector field are 

multiplied by a factor of l/A compared to the usual 
canonical equations. 

As one can directly read off from (4), the action- 
type quantities BI , . . . , B,,_2 are conserved quantities 

for the normal form if we neglect the exponentially 

small terms. This fact enables us to treat the corre- 
sponding normalized Hamiltonian vector field as an 
exponentially small perturbation of the terms that do 
not depend on the fast phases p. Since in the p- 
independent Hamiltonian system the B-components 
of the equations decouple, we naturally arrive at the 
study of a two-degree-of-freedom Hamiltonian which 

is an order O( &> perturbation of Hpend( A, a). 
We are now in the position to formulate our major 

hypothesis that I’ lies in the intersection of a weaker 
and a stronger resonance, corresponding to the inte- 
ger vectors r2 and t-1, respectively. We require the 
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pz-dependent part of the Fourier series in (5) to be 
smaller than a small parameter p with 0 < p < 

(IHI(P,+;E)II. Th is assumption is reasonable since 
HI is as analytic function so its Fourier coefficients 
decay exponentially. In particular, for any 0 < K < CT 

we have the estimate [ 121 

II 
c hkCP;O) exp(i(k4)) 

Ikl>lrzl Ii 

This estimate implies that if 

= Int z log 
4”+‘(n - I)“_‘& 

pee”-l K” + 1, (6) 

then the pendulum Hamiltonian (5) can be recast in 

the form 

Hpend(A,(Y)=~(A,PA)f~(al;~)+~uVz(cu;~), 
(7) 

with 

V?(a;pu) = c 
If~ll/+lPznll~uP) 

2 exp(i(p, cy)). 

It is important to note that both VI and V2 admit p- 

independent bounds, in particular 

IV1 <K,, Iv,\ < 1. (8) 

Using Cauchy’s inequality, we also obtain that 
IID~V211 < Ikl!~-l~l for any multi-index k E Z”, 
hence the derivatives of the potential V2 also admit 

p-independent bounds, just as those of VI. The re- 
markable feature of (7) is that it is a nearly integrable 

system for small values of CL. In order to study this 
system, we want to consider the p = 0 limit. To avoid 
the blowup of L(p) that occurs at this limit, we in- 

troduce a new small parameter p with 0 < p < p and 
consider the slightly different Hamiltonian 

H,,end(A>~:P) = ~(A,PA)+~(cul;~)+pV2(cu;~). 

(9) 

Then, for any sufficiently small but fixed 0 < p < 
min( 1, K,), we can establish perturbation re$ults for 
Hpend( A, a;p) with 0 < p < pa sufficiently small. 
If these perturbation results are obtained by methods 
that only require ,u-independent bounds on the pertur- 

bation “potential” V2 and its derivatives, than the re- 

sults continue to hold if we decrease the value of ,u to 
achieve p = PO. 

3. The integrable limit 

The Hamiltonian vector field corresponding to 
Hpend( A, (Y; 0) takes the form 

Al = -&,v,((Yl;P), A2 = 0, 

4 =PIIAI +p12A2. k2 = p22A2 + p12A2. (10) 

thus A2 is an integral of this system. We assume that 

the periodic potential V, has isolated local minima and 

maxima and the nondegeneracy conditions 

Pll # 0, detP # 0 (11) 

hold. Any local extremum point 51 of Y gives rise 

to an equilibrium (-pt~A2/pi I, EI ) of the (AI, LYI ) 

equations, which yields a two-dimensional invariant 

manifold of ( 10) of the form 

(A,cu) Ial =&, A, = -%A2 . 

We are interested in the case when the equilibrium 

(-pi2A2/pl,, El ) is a saddle, i.e., when the manifold 
Mt’ is normally hyperbolic. Such a manifold is either 
connected to itself or to some other hyperbolic invari- 

ant manifold by homoclinic or heteroclinic mhnifolds. 
In Fig. 1 we show the geometry of the ~invariant 

manifold J$’ by factoring out the angular coordinate 
(~2. We also indicate two important three-dimensional 
surfaces in the figure that appear as planes. The plane 
A1 = 0 corresponds to the resonance hypersurface as- 
sociated with the stronger ri-resonance, while A:! = 0 
describes the hypersurface of the weaker r2-resonance. 
We shall refer to these hypersurfaces as the c&es ofthe 
respective resonances. It is simple to see tha most SO- 
lutions in M,“’ are periodic and, in terms of : he full n- 
degree-of-freedom normal form (4)) they correspond 
to the limits of (n - I)-dimensional whiskered tori 
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Fig. 1. The invariant manifold Mt’ 

that are created by the perturbation in the resonance 
junction. Note that the solutions of (10) have zero 

evolution in the direction of the weaker resonance; in 

particular, there are no solutions that cross the core of 
the weak resonance. At the same time, in any neigh- 
borhood of the manifold M,“’ most solutions do cross 

the core of the strong resonance. 
Restricted to the manifold Mi’, the gradient 

Hpen,j(A,LY;O) is of the form 

of 

D&,,d(A, KO)(Md, = O,O, - 2, 
detPA o 

. 
0 PI1 

The third entry in this vector is precisely the frequency 
of the periodic orbit in M,“’ which is labelled by the 
given constant value of AZ. By ( 1 l), this frequency 
is nonzero away from the core of the weak resonance 
(A2 = 0). This implies that the three-dimensional 

energy surfaces of system ( 10) intersect M,“’ trans- 

versely along periodic orbits that are separated from 
the core of the weak resonance. (Transversality can be 
seen by noting that for any fixed A:! # 0 and CY~ E S’, 

the gradient DHpend has a nonvanishing inner product 

with the vector (-pi2/pi I, 0, 1, O), which lies in the 
tangent space of is Mi’.) Hence, a more geometric 
explanation for the lack of motions crossing the weak 
resonance is the fact that the energy surfaces near M,“’ 
act as barriers to such motions. 

The core of the weak resonance intersects the mani- 
fold Mt’ in an invariant circle (or resonant circle) C, 
that satisfies AI = A2 = 0. This circle does not carry 
periodic solutions, rather, it consists entirely of equi- 
libria. This object has a great significance in the study 
of the resonance junction as it corresponds to the in- 
variant (n - I)-dimensional torus of the integrable 

Hamiltonian Ha that is located precisely at the center 
of the resonance junction, i.e., at the intersection of 
the cores of the weak and the strong resonances, In the 
limit p = 0 of the normal form, this torus is foliated by 

a one-parameter family of ( IZ - 2) -dimensional invari- 

ant tori which appear in system (10) as the equilibria 
contained in the resonant circle. 

4. Diffusion across the weak resonance 

The question we want to address now is how the 

flow near the circle C, changes in the perturbed system 

A, = -D,,~,(w;P) -@,,V~(GP), 

A2 = -pD,,ti(~;~u), 

4 =PIIAI +p12A2, k2 = p12A1 + p22A2. (12) 

Basic invariant manifolds guarantee [ 141 that the 

manifold Mt’ will smoothly perturb into a O(p) C’- 
close invariant manifold M%l for any finite integer 
r. It is not difficult to show [ 151 that this perturbed 
manifold carries a one-degree-of-freedom Hamilto- 

nian dynamics which slightly deforms but preserves 
the periodic solutions on Mzf away from the A2 = 0 
core of the weak resonance. The perturbed energy- 
surfaces are now given by Hpend (A,cu;p) =constand 
they keep intersecting the manifold Mz’ transversely 

with 0( 1) transversality away from the set A2 = 0. 
As a result, they remain barriers to motions in di- 

rections transverse to the weak resonance. However, 
such barriers are not guaranteed to survive in a neigh- 

borhood of the surface A2 = 0 where the unperturbed 
energy surface is degenerate and has a nontransverse 
intersection with the manifold Mt' . 

To understand what happens on M%l close to this 
degeneracy, we introduce the usual resonance scaling 

A2 = ,/‘F rl, 

which “blows up” a neighborhood of the core of 
the weak resonance. Then the Hamiltonian flow on 
M%fi is generated by the restricted Hamiltonian 3-1, = 

Hnen&‘f;’ t which is of the form 

7-4?(7?,a2) =p7-lH(r17cf2) +wP3’2L 

(13) 
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We refer to ?-l as the reduced Humiltonian and note that 
nonsingular level curves of this Hamiltonian smoothly 
approximate actual trajectories of the restricted Hamil- 
tonian 3-1, with 0( &) precision (which means O(p) 
precision in the original A2 coordinate). These actual 

motions on ME1 satisfy the equations 

which are Hamiltonian, but in general are only canon- 
ical at leading order [ 15 ] . These equations show that 

M:’ is locally a slow manifold that contains mo- 
tions with a characteristic time scale of the order of 

0( l/G). We call these slow motions difSuusion on 
the perturbed manifold M%‘. 

As seen from ( 13)) the reduced Hamiltonian 7-t is 
a one-degree-of-freedom potential-type Hamiltonian 

with mass det P/p, 1 and potential V~(&,LY~; ,u). In 
general, by the nondegeneracy conditions ( 1 1 ), all 
equilibria of such a Hamiltonian lie on the cy2 axis and 
all level curves of ‘FI intersect the axis v = 0 trans- 

versely. A typical phase portrait for ‘FI is shown in 
Fig. 2a. Note that almost all orbits in an order 0( J7;) 
neighborhood of the core of the weak resonance cross 
the core of the weak resonance and connect points 
on opposite sides of this core that are O( fi) apart 
in their AZ coordinates. The existence of these mo- 

tions is due to the change in the topology of the en- 
ergy surface Hpend(A, LU: p) = const which removes 

the energy-barriers near A2 = 0 and allows solutions 
to cross the weak resonance (see Fig 2b). (This new 
topology of the energy surfaces follows from the re- 
sults of Fenichel on the invariant foliations of stable 

and unstable manifolds [ IO, 111.) It is then plausible 
to define the width of the weak resonance channel near 
MFl by picking the maxima and minima of the sepa- 
ratrices that separate crossing and noncrossing trajec- 

tories on the slow manifold, and considering the strip 
lying between these two 7 values (see Fig. 2a). If cY2 
is the angular coordinate of the hyperbolic equilibrium 

to which the two limiting separatrices asymptote, then 
the width of the weak resonance channel in terms of 
the original localized action variable A2 is given by 

AA:! = fiArl> 

> 

l/2 

1 . (14) 

We exclude a small but fixed neighborhood of the 
slow separatrices by picking a periodic orbit’Yu that 

bounds some elliptic region U (see Fig. 3a). We can 
then write down an upper bound on the time it takes 

for slow motions on M$’ to diffuse from one side of 
the resonance channel to the other side. This upper 

bound is of the form 

AT(P) = ;;,, (15) 

where ,,$ CI, is the modulus of the average velocity 

of a solution while it travels from one extremtim point 
of the orbit yu to the other (as a result, the ~quantity 
jCu/ is 0( 1) asp + 0). 

We can also estimate the measure of initial condi- 

tions in the vicinity of the manifold Mz’ for which the 
corresponding solutions exhibit a similar 0(&i) dif- 
fusion through the core of the weak resonance. First, 
we define the open annular region V c U as shown 
in Fig 3a. Note that points in V are initial conditions 
for solutions that connect points on differem sides of 

the weak resonance with action v coordinates at least 
$Aq apart from 7 = 0. We define the constant ct > 0 
so that on each solution in the set V the time of passage 

from one extremum point to the other on thelopposite 
side of the weak resonance is bounded by cl/,,@. 

The key tool we use at this point is a general normal 
form for ( 12) near hyperbolic slow manifolds which 
is originally due to Fenichel [ 10,161. Near ~the slow 
part of the manifold MF’ and for (AZ/,,@. ~2) E U, 
this normal form is given by 

il = [ -A + Xl (x, Y)Xl + X2(x, y)x2 

+ fiX3(~~?:)lXl~ 

k2 = [hf X4(X,Y)Xl + XS(X,Y)X? 

+ fix6(x,Y)1x?, 

jl = fi r, (xv Y)XIXZT 

j2 = fi r,(Yl) + fiCX,Y)XlX2. (16) 

Here the functions Xi and q are as smooth ns needed 
and they also depend on the parameter fi: The pos- 
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Fig. 2. (a) Phase portrait for the reduced Hamiltonian. (b) Schematic picture of energy surfaces near the weak resonance for p > 0. 

,@ x2 

3 $3 

Fig. 3. (a) Definition of the sets (I and V. (b) Local geometry near the slow manifold. 

itive constant A is equal to the positive eigenvalue of 
the Jacobian D2Hpend( 0, 0, 51; 0). The slow manifold 
M:’ is now simply given by x = 0 and its local stable 
and unstable manifolds are given by x2 = 0 and x1 = 

0, respectively. The coordinates (~1, ~2) are action- 
angle-type variables for the periodic orbits in the do- 
main U. We want to determine the possible initial con- 

ditions for a solution (x(t) , y(t) > that enters a small 
box of size 280 around the slow manifold (see Fig. 
3b) and stays close for times t < AT(p) to a slow 
solution (x, ( t) , yS ( t) ) in the set V. A simple estimate 
based on the Fenichel norm form ( 16) shows that the 
x2 coordinates of such trajectories at entry have to sat- 

isfy 1x2 (0) 1 < 60 exp( -3~ A/4@), otherwise these 
trajectories would leave the &-box before the time 
AT( ,u) . (Here 2cl /@is a lower bound on the periods 
of the solutions inside V.) In that case, ( 16) yields the 

estimate (XI (t)q(?)( < Kaiexp( -qA/2,/5) for all 
t E [ 0, AT( ,s) ] and for 60 sufficiently small, which 
in turn implies 

sup 
E[O,AVp) 

sup 1Y2(t) -ys2(t)l < K&exp(-clA/2&5). 
rE[o,AT(~cr) I 
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Thus the y-coordinates of the solution passing 
through the &-box indeed stays (exponentially) close 
to the y-coordinates of the slow solution. As a re- 
sult, we can select an open set Z of initial conditions 
around the slow manifold with measure 

m=A (1) 

> &[Area( V) x 60 x SO exp( -cl A/2,/5)] 

= O(exp( -cl h/2&? ), (17) 

such that solutions starting from the set Z diffuse 
through the weak resonance along the strong reso- 
nance. (Here mesA ( ) denotes the Lebesgue measure 
in the (A,cu)-space.) If the estimates (15) and (17) 

hold for 0 < p < pe, then decreasing the value of ,LL 
to pa and using (6) we obtain the following diffusion 
time and diffusion measure estimates for motions of 

the original Hamiltonian ( 1 ), 

hT< ~C,(ll)K”‘*exp($Klr2() 

A dKT ’ 

mesl (1) > E”/*C2 exp 
/\K” exp( iKIr2() 

- 
> C3(n)dz 

(18) 

Here Cl > 0, and the positive constants Ct (n) and 
C2( ~2) depend only on the number of degrees-of- 
freedom. The factor l/fi in the diffusion time es- 

timate is the result of the fi factor multiplying the 

pendulum Hamiltonian in (4)) and the E”/* factor in 
the measure estimate enters because of the transfor- 
mation (3). Note that while the lower estimate for 
mesl (2) is super-exponentially small in terms of the 
order of the weaker resonance, it is algebraic in the 
perturbation parameter E. This fact is quite remark- 
able because if one performs similar estimates for the 
measure of initial conditions that exhibit Arnold dif- 
fusion along a single resonance of Hamiltonian ( 1)) 
one obtains a measure that is exponentially small in E 

[ 61. To summarize, we can conclude that while dif- 

fusion across weak-strong resonance junctions of the 
Hamiltonian (1) is necessarily restricted to lengths 

of the order of O(A) as E + 0, its speed and the 
measure of initial conditions it effects is much larger 
than the same quantities for Arnold diffusion along a 
single resonance, even when the latter are computed 
for similar lengths in the action space. 

5. Conclusions 

In this note we have derived a normal form to de- 
scribe motions near the intersection of a weaker and a 

stronger resonance in an n-degree-of-freedom, nearly 
integrable Hamiltonian system of form ( 1) . I_@ing the 

exponential decay in the Fourier series of 
t 
he ana- 

lytic perturbation, we have shown that if theorder of 

the second resonance obeys estimate (6) for some 
small number ,U < jlHt (I’, 4; E) 11, then the nor- 
mal form is an order O(,U) perturbation of ian inte- 

grable pendulum-type equation that depends(only on 
the stronger resonant combination of the phnses. As 
a result of its logarithmic dependence on 1 A/_L, con- 
dition (6) does not require a very high order (r2/ for 

the second resonance, thus we expect our results to be 
relevant for a large class of resonance junctions. 

We have analyzed the integrable part of the normal 

form and identified energetical barriers thad prevent 
motions from crossing the weaker resonance along the 
stronger one. However, near an ( n - I )-dimensional, 
doubly-resonant torus at the center of the junction. 
these barriers are singular and are typically destroyed 
by the perturbative effect of the weaker resottance. In- 
deed, in terms of the pendulum-type Hamiltonian, the 
singularity perturbs into a normally hyperbolic, invari- 
ant slow manifold that contains periodic solutions that 
cross the weaker resonance. These slow peqodic so- 
lutions correspond to (n - 1 )-tori in the full truncated 

normal form which possess one slow phase.‘The sur- 

vival of these tori under the exponentially small tail of 
the normal form is a more subtle question which we 
did not address here [ 111. However, the exilstence of 
solutions that connect the opposite sides of lthe weak 
resonance while moving along the strong respnance is 
independent of the persistence of the abovei tori. The 
reason is that for E sufficiently small, I/& << eC/’ 
(see ( 18)), thus, by basic results from mplti-phase 
averaging, the above motions do approximate actual 
near-resonance motions of Hamiltonian ( 1) with ex- 
ponentially small error on the time scale of the es- 
timated crossing time AT [ 9,13,1 I 1. We also gave 
a lower estimate in ( 18) for the measure) of initial 

conditions that exhibit the same cross-resonance dif- 
fusion. Our estimates are algebraic in then perturba- 
tion parameter E as opposed to similar estimates for 
Arnold diffusion along a single resonance, which yield 
a lower bound that is exponentially small Fin E. This 
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fact gives an explanation for the numerical results in 
Ref. [ 81 which indicate that cross-resonance diffusion 

appears to dominate Arnold diffusion and it frequently 
involves higher order resonances. 

The diffusing trajectories we constructed in this note 

are regular motions that may cross the weak resonance 

repeatedly. In a companion paper [ 111 we show the 
existence of complicated, multi-pulse homoclinic or- 

bits that asymptote to the crossing motions in forward 
and backward time after an intermediate “jumping” 

along the stronger resonance. These homoclinic or- 
bits turn out to admit a universal bifurcation diagram 
that can be described by an infinite binary tree. Fur- 
thermore, these orbits are created via 0( &) splitting 

of separutrix swfuces which results in more intense 

chaotic dynamics than in the case of diffusion along 

a single resonance. 
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