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Abstract: Computational models aid in the quantitative understanding of cell signalling networks.
One important goal is to ascertain how multiple network components work together to govern cel-
lular responses, that is, to determine cell ‘signal-response’ relationships. Several methods exist to
study steady-state signals in the context of differential equation-based models. However, many bio-
logical networks influence cell behaviour through time-varying signals operating during a transient
activated state that ultimately returns to a basal steady-state. A computational approach adapted
from dynamical systems analysis to discern how diverse transient signals relate to alternative
cell fates is described. Direct finite-time Lyapunov exponents (DLEs) are employed to identify
phase-space domains of high sensitivity to initial conditions. These domains delineate regions exhi-
biting qualitatively different transient activities that would be indistinguishable using steady-state
analysis but which correspond to different outcomes. These methods are applied to a physico-
chemical model of molecular interactions among caspase-3, caspase-8 and X-linked inhibitor of
apoptosis – proteins whose transient activation determines cell death against survival fates.
DLE analysis enabled identification of a separatrix that quantitatively characterises network beha-
viour by defining initial conditions leading to apoptotic cell death. It is anticipated that DLE analy-
sis will facilitate theoretical investigation of phenotypic outcomes in larger models of signalling
networks.
1 Introduction

Reaction models employing differential equations are fre-
quently used as tools for computational exploration of
complex biomolecular networks, such as those involved in
signal transduction of extracellular stimuli governing cell
fate. These models, generally based on mass-action
kinetics, incorporate network topology and quantitatively
describe the kinetics of interactions between network com-
ponents [1–8]. Because these mechanistic models are large
and complicated, quantitative analysis is necessary to
extract understanding [6, 9]. A typical objective of model
analysis is to comprehensively characterise the response
of the signalling network to changes in system parameters.
By altering network behaviour, changes to protein levels or
reaction rates may lead to different cell fates following
exogenous stimulation [10–13]. As an example, activation
of the small GTP-binding protein Ras can induce a
variety of cell responses including cell proliferation and
differentiation, depending on the cell type and extracellular
conditions. Perturbations to the Ras-mediated regulatory
network can promote pathological cell behaviour;
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mutations that affect Ras levels or binding or reaction
rates are often linked to cancer [14]. Numerous similar
examples may be found underlying cell behavioural dys-
regulation; thus, illuminating how changes in molecular
interactions alter signalling network behaviour is key to
understanding the molecular basis of disease. Simulations
can be used to inspect signalling behaviour arising from
network perturbations of potential interest – perhaps a
genetic mutation or pharmacological intervention [6, 15].
By simulating a mechanistic model, predictions can be
made about how specific changes to parameters such as
stimulation or drug inhibition conditions, initial concen-
trations and reaction rates will affect signalling [4, 16–21].
To link different cell responses to complex signalling
interactions, however, more systematic, comprehensive
analysis methods need to be applied.

Common systematic tools for studying the behaviour of
differential equation models for signalling networks
include parameter sensitivity analysis and steady-state
analysis. Determining sensitivity to rate constants and
initial conditions (i.e. protein levels at the initial time
point) is useful for finding reactions and species that are par-
ticularly important in the overall reaction scheme [22–24].
However, the local sensitivities that may arise from inter-
twined multivariate interactions cannot be revealed by
single-parameter sensitivity analysis. A comprehensive
analysis, where several parameters are changed simul-
taneously, is often computationally impractical and the
results intractable. The analysis method presented in this
work is based on direct Lyapunov exponents (DLEs),
which is a comprehensive local sensitivity analysis of
model initial conditions. The DLE approach can be inter-
preted in a manner that is analogous to steady-state analysis
of metabolic networks. Our analysis goal is to understand
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how the qualitative network behaviour (the biological fate)
depends on the quantitative combinations of network com-
ponent parameters (the network state).

Steady-state analysis methods have been established in
dynamical systems as powerful methods for analysing
models of a variety of physico-chemical processes, includ-
ing fluid flow and chemical reactions. These techniques,
including fixed-point bifurcation methods, have been suc-
cessfully used to study several biological network models.
These methods delineate how changes in initial conditions
and rate parameters affect the biological outcomes associ-
ated with different equilibria. Good candidates for this
analysis are systems with multiple steady-states, where
each phenotypic behaviour is associated with a particular
steady-state. Examples include metabolic networks, the
cell cycle and engineered gene networks [2, 5, 25–27].
In contrast, many signal transduction networks affect cell
fate through transient, pre-steady-state signals. Here, we
will refer to these systems as ‘transient response networks’.
In transient response networks, rapidly changing signals, or
transients, other signals that propagate through the path-
ways [10, 19, 20, 28]. In these systems, the time evolution
of transient signals, not steady-state signals, influences
cell behaviour. For this reason, transient response systems
may not be good candidates for steady-state analysis. To
understand these systems, we require methods that
analyse transient signals, such as DLE analysis described
here.

The transient response system that we analyse in this
work is a core sub-network of the signal transduction
cascade regulating the programmed cell death
(apoptosis)-against-survival phenotypic decision. Apopto-
sis has in some previous work been modelled as a bistable
system where death and survival are distinct stable
steady-states [29, 30]. However, this is not the only way,
nor necessarily the most appropriate way, to cast a
problem that appears to involve a transient response
network [10, 28, 31]. In fact, models focusing on the later
stages of the apoptotic decision such as ours as well as
one of the alternative models developed by Eissing et al.
[29] do not exhibit bistablity. In response to apoptotic
stimuli, this network produces a transient response that is
dependent on the stimuli and the state of the cell. The tran-
sient signals will either lead to apoptosis (where the network
does not reset because the cell dies) or survival (where the
network resets).

Apoptosis is induced by extrinsic (receptor-dependent)
and intrinsic (intracellular) pathways. Common to both
pathways is the activation of caspases, a family of proteases
that execute the cell death decision by cleaving protein
targets. The caspases activate each other to form a protease
cascade and are themselves subject to regulation by many
other proteins [32–34]. Caspases are synthesised in an
inactive state (pro-caspases or zymogens) and become
active when dimerised or cleaved by other caspases.
Intracellular or extracellular pro-death stimuli lead to
dimerisation and cleavage of initiator caspases such as
caspase-8. Once activated, these initiator caspases in turn
cleave and activate effector caspases such as caspase-3
(Fig. 1). Activation of initiator by effector caspases
generates positive feedback that can amplify this cascade
[32, 35]. Prolonged activation of effector caspases leads to
programmed cell death. A critical inhibitor is X-linked
inhibitor of apoptosis (XIAP), which negatively regulates
the enzymatic activity of caspase-3. Additionally, XIAP
tags active caspase-3 for ubiquitination. This modification
promotes caspase-3 degradation and causes caspase-3
activity to be transient [36, 37].
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Analogous to the application of steady-state analyses to
signalling networks where equilibria correspond to cell
response, we describe direct finite-time Lyapunov exponent
(DLE) analysis as a method to study transient response sig-
nalling networks. We use DLEs to analyse how transient
signalling dynamics are affected as different parameters
change individually or simultaneously in multi-dimensional
phase space (the set of initial chemical species concen-
trations). DLE analysis is not the first method to measure
local sensitivity analysis, but is distinguished from pre-
viously applied techniques because DLEs are calculated as
parameters change simultaneously, not individually [23].
DLEs were originally used to find invariant manifolds in
dynamical systems and fluid flows [38–41]. Similarly, we
use DLEs to find separatrices, or sensitive regions in phase
space that separate signals giving rise to different responses.
Separatrices are useful because they quantitatively identify
points at which continuous change in species concentration
lead to dramatic, discontinuous change in response. As an
example of current interest in molecular cell biology, we
used DLEs to analyse a small, mechanistic model of a tran-
sient response network describing caspase-3 activation in
the network described above. We were able to characterise
initial conditions (concentrations of protein species)
leading to survival and apoptosis with the DLE-defined
separatrix, but not by examining steady-states. We thereby
gained conceptual insight into the integrated effects of
multiple components in this network.

2 Methods

2.1 Caspase-3 activation model

A system of ordinary differential equations describing the
activation of caspase-3 by caspase-8 was constructed
using mass-action kinetics and the known topology of this
portion of the apoptosis regulatory network (Fig. 1). We
have made the following central assumptions: (a) chemical
species are present at spatially-uniform concentrations; (b)
caspase-6 is not involved in the feedback between active
caspase-3 and caspase-8; (c) ubiquitination can be rep-
resented by a single lumped reaction; and (d) caspase

Fig. 1 Schematic of mathematical model for caspase-3
activation

Caspase-3 (casp-3) activity is regulated by caspase-8 (casp-8) and
XIAP. Caspase-8 (an initiator caspase) activates caspase-3 (an effector
caspase) after forming a complex. Positive feedback is similarly
accomplished through activation of caspase-8 by caspase-3. XIAP
inhibits active caspase-3 by tagging it for ubiquitination and degra-
dation. Here, a star indicates the active form of the caspases, a colon
indicates a complex, and ‘ub’ indicates ubiquitination tagging.
Labels in X and v series correspond with species and reaction
numbers, respectively
IEE Proc.-Syst. Biol., Vol. 153, No. 6, November 2006



activation is achieved after an inactive caspase interacts
with an active caspase. The differential equation describing
the concentration of active caspase-3 tagged for ubiquitina-
tion (x9) was removed from the model because it does affect
the network. Values for the rate constants are listed in
Table 1. The equations defining the model are as follows:

_x1 ¼ �k1x4x1 þ kd1x5 ð1Þ

_x2 ¼ kd2x5 � k3x2x3 þ kd3x6 þ kd4x6 ð2Þ

_x3 ¼ �k3x2x3 þ kd3x6 ð3Þ

_x4 ¼ kd4x6 � k1x4x1 þ kd1x5 � k5x7x4 þ kd5x8 þ kd2x5 ð4Þ

_x5 ¼ �kd2x5 þ k1x4x1 � kd1x5 ð5Þ

_x6 ¼ �kd4x6 þ k3x2x3 � kd3x6 ð6Þ

_x7 ¼ �k5x7x4 þ kd5x8 þ kd6x8 ð7Þ

_x8 ¼ k5x7x4 � kd5x8 � kd6x8 ð8Þ

2.2 Direct finite-time Lyapunov exponent

The DLE is a measure of local sensitivity to changes in
initial conditions, evaluated multi-dimensionally at a finite-
time, as depicted for one dimension in Fig. 2. First, for a
selected trajectory, the derivative of the current trajectory
position with respect to its initial location is calculated in
all independent directions at each finite-time instant of
interest. These directional derivatives are in turn assembled
into a time-dependent gradient matrix, whose entries are
indicative of the rate at which neighbouring trajectories sep-
arate in the corresponding directions. The spectral norm (or
largest singular value) of the gradient matrix gives the
instantaneous maximal rate of local trajectory separation
over all directions. The DLE associated with the selected
trajectory is then defined as the time-averaged logarithm
of the above norm, measuring the maximal rate of exponen-
tial separation between the underlying trajectory and nearby
trajectories. By definition, large DLE values reveal large
local sensitivity in the flow with respect to changes in
initial conditions.

In numerical computations, we select a sufficiently dense
grid of initial conditions for which numerical differentiation

Table 1: Parameter values, units and sources

Parameter Value Units

k1 2.67 � 1029 cell � (s �molecules)21

kd1 1 � 1022 s21

kd2 8 � 1023 s21

k3 6.8 � 1028 cell � (s �molecules)21

kd3 5 � 1022 s21

kd4 1 � 1023 s21

k5 7 � 1025 cell � (s �molecules)21

kd5 1.67 � 1025 s21

kd6 1.67 � 1024 s21

Parameter names include the reaction number and ‘d’ for
dissociation constants. All parameters except for kd5 and kd6

were derived from a physico-chemical model fit to quantitative
data from time courses of HT-29 human colon carcinoma cells
treated with TNF [Schoeberl et al., unpublished results]. kd5 was
derived using parameters in [42]. The ubiquitination rate, kd6,
was assumed to correlate with an average delay of 100 min
between ubiquitination tagging and degradation
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gives meaningful results. We then launch trajectories from
each grid point and calculate the DLE value defined
above for each trajectory. We plot the resulting DLEs
over the initial grid to identify locations of highly sensitive
initial conditions. Regions of phase-space exhibiting differ-
ent qualitative behaviours are necessarily separated by
sensitive initial conditions, and hence their boundaries
(separatrices) will appear as local maximisers of the DLE
field. The accuracy of separatrix locations obtained in this
fashion will increase as the initial grid size is refined. By
the continuous dependence of trajectories on initial con-
ditions, separatrices are captured by our procedure even if
they do not exactly intersect the initial grid. This is
because separatrices have whole neighbourhoods of
increased sensitivity, which are captured by a sufficiently
dense initial grid.

DLEs, apart from their application described here,
are particularly useful in finding repelling and attracting
surfaces and have been used in fluid mechanics [40, 41]
and rigid body dynamics [41]. DLEs were proved to
robustly identify the locations of maximum stretching
(divergence between nearby trajectories) by Haller
[38, 39]. We use the maximum stretching among all
dimensions to measure the rate of exponential separation
for a finite-time between two neighbouring trajectories
(Fig. 2).

To quantify the degree of stretching at particular initial
conditions, first we define the separation (9) and approxi-
mate it by linearisation (10):

zðtÞ ¼ xðt; t0; x0 þ z0Þ � xðt; t0; x0Þ

¼
@xðt; t0; x0Þ

@x0

z0 þ Oðjz0j
2
Þ ð9Þ

zðtÞ ffi
@xðtÞ

@x0

z0 ð10Þ

Here x and z are vectors describing species concentration
and trajectory separation, respectively. Next, we define
stretching as the matrix (spectral) norm of the deformation
gradient @x(t)/@x0. Recalling

kAk ¼ ðlmaxðA
TAÞÞ1=2

ð11Þ

Fig. 2 Large DLEs identify the location of maximum separation
between trajectories, defining a separatrix

DLEs measure local sensitivity to initial conditions. Relative to the
time point used in the calculation of the exponent, small DLEs indicate
little sensitivity (green). Large exponents indicate high sensitivity near
the initial conditions (purple)
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for a square matrix A (where lmax(X) denotes the maximum
eigenvalue of X ), we obtain:

@xðtÞ

@x0

����
����2

¼ lmax

@xðtÞ

@x0

� �T @xðtÞ

@x0

� � !
ð12Þ

We then define the finite-time maximal (over all directions)
stretching rate experienced along the trajectory x(t, t0, x0) as:

1

t � t0
log

@xðtÞ

@x0

����
���� ¼

1

2ðt � t0Þ
log lmax

@xðtÞ

@x0

� �T @xðtÞ

@x0

� � !" #

ð13Þ

Note that we can treat 1/(2(t2 t0)) as a constant because the
stretching rates are compared at a particular time t.
Therefore we can further simplify (13) to define the DLE
by factoring out this constant:

DLEðt; x0Þ ¼ log lmax

@xðtÞ

@x0

� �T @xðtÞ

@x0

� � !" #
ð14Þ

2.3 DLE computation and visualisation

Classical finite-time Lyapunov exponents are typically
computed for

_x ¼ f ðx; tÞ ð15Þ

by numerically solving the linear system

_z ¼
@f

@x
ðxðt; t0; x0Þ; tÞz ð16Þ

obtained from differentiating (10) in time. By contrast, DLEs
are computed directly from (10), without the laborious sol-
ution of (16) along all trajectories. Specifically, we compute
finite-time Lyapunov exponents directly by differentiating
final trajectory positions with respect to their initial condition
(hence the terminology ‘direct’ Lyapunov exponent).

To compute DLEs, a grid of initial conditions sampling
phase-space was chosen, and each set of initial conditions
was integrated with respect to time using the ode15s
solver in MATLAB 7.0 (The Mathworks, Natick,
Massachusetts). The deformation gradient @x(t)/@x0 was
then obtained from a numerical differentiation of final tra-
jectory position with respect to their initial conditions.
Next, the natural log of the maximum eigenvalue of the
strain tensor (@x(t)/@x0)T(@x(t)/@x0) was computed to find
the DLE, as defined in (14), at each initial condition.

For a grid of approximately 1.6 � 106 points, the entire
computation (including trajectory integration) was com-
pleted in approximately 85 h on a Linux workstation with
2 GB of memory and dual 2.80 GHz Intel Xeon processors.
The points on the grid were linearly spaced along each
direction. The MATLAB code performing the computation
is provided at http://cdpcenter.org/. The resulting DLEs
were visualised using Spotfire DecisionSite (Spotfire,
Somerville, Massachusetts).

3 Results

3.1 Cell phenotypic response of apoptotic
death is governed by transient signals in a
caspase-mediated network

As a test case of a biologically important transient response
network, we explored a mechanistic, differential equation-
based model of caspase-3 activation depicted in Fig. 1.
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This network includes both pro-apoptotic elements
(caspase-8 and caspase-3) and a pro-survival factor
(XIAP). While it has only eight distinct species (and dimen-
sions), our caspase-3 activation model is complex enough to
be obscure without analysis.

In the presence of active caspase-8, this network pro-
duces a transient response that is dependent on the initial
conditions (concentrations) of the eight network species
(Figs. 3a and b). In cells, apoptosis is triggered by elevated
and prolonged caspase-3 (or effector caspase) activation.
Fig. 3 shows simulated time courses (trajectories) from
our model, where apoptotic cells are categorised as exhibit-
ing a relatively tall and wide pulse of active caspase-3,
while surviving cells are characterised by short and
narrow spikes of active caspase-3. As expected in a transi-
ent response system, we observe that after decay of the tran-
sient signal, pro- and anti-apoptotic time courses eventually
reach the same type of steady-state (although with different
concentrations of XIAP, Figs. 3c and d). A careful look at
the time scale shows that it takes nearly a week for the pro-
death signal to reach equilibrium. In reality, such a cell
would have died before the end of two days, and this
steady-state would never be reached. For simplification,
this model does not include protein turnover. We observed
that the introduction of turnover into our model did not sig-
nificantly change its response (see online supplementary
materials).

This preliminary inspection of the caspase-3 activation
model demonstrates that transient signals for pro- and anti-
apoptotic conditions differ qualitatively. These two types of
trajectories separate from one another before reaching
steady-state. Furthermore, the behaviour of the network is
dependent on initial conditions. By increasing the initial
concentration of XIAP, the transient signal changes from

Fig. 3 Time-course simulations show transient death and survi-
val responses under two different initial conditions of XIAP

a With little XIAP (2.9 � 103 molecules/cell) to inhibit activation of
caspase-3, caspase-3 activation is sustained and destines this cell for
death
b With more XIAP (2.9 � 104 molecules/cell), the pulse of caspase-3
activity is small and destines this cell for survival
c, d Longer time course shows that both apoptotic and non-apoptotic
signals arrive at the same type of fixed point
The simulation conditions are the same as in a and b, respectively
In these time courses, the initial conditions were 0 molecules/cell for
intermediate complexes and active caspase-3, 1 � 105 molecules/cell
for active caspase-8, 1.34 � 105 molecules/cell for inactive caspase-8,
and 2.67 � 105 molecules/cell for inactive caspase-3
IEE Proc.-Syst. Biol., Vol. 153, No. 6, November 2006



a pro-apoptotic to a pro-survival signal (Fig. 3). We antici-
pate that there is a sensitive initial condition of XIAP at
which the behaviour of the network changes, and that this
sensitive point will shift according to initial conditions of
the active and inactive caspases.

3.2 Large DLEs define a separatrix separating
phase-space into pro- and anti-apoptotic regions

As described in Sections 1 and 2, we employ DLEs to
search our model phase-space for regions delineating
diverse behaviour of transient network signals related to
different cell phenotypic responses (Fig. 2). Neighbouring
trajectories in these regions will veer away from each
other, thus exhibiting large DLEs that effectively define
separatrices dividing the phase-space into regions posses-
sing different trajectory behaviours. Because DLEs are cal-
culated for the endpoint of the trajectories, they depend on
the specific time point at which the trajectory separation is
measured. This feature is a crucial aid in studying transient
response systems, for it insures that the analysis can be
performed on the basis of transient signals.

To characterise the network’s dependence on initial con-
ditions in multiple dimensions, we computed DLEs across
an eight-dimensional grid spanning a wide range of initial
species concentrations. Totalling approximately 1.6 � 106

points, the grid points are linearly spaced along each direc-
tion. These concentrations were chosen to encompass
protein expression across cell populations and under
different signalling conditions in Hct-116, HeLa and
HT-29 carcinoma cell lines (102–105 molecules/cell for
XIAP and 102 2 3.5 � 106 molecules/cell for the caspases
[S. Gaudet and K. Leitermann, personal communication]).
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Biochemical intermediates were sampled with coarser
resolution because they were not found to contribute to
the network behaviour (data not shown). To find a separa-
trix, DLEs were calculated at 6 h, by which time Hct-116,
HT-29 and HeLa cells would have responded to treatment
with death-inducing ligands tumor necrosis factor (TNF)
or TNF-related apoptosis-inducing ligand (TRAIL)
[Aldridge et al., unpublished observations]. To determine
how narrow the time window of effective separatrix appear-
ance might be, we additionally undertook DLE calculations
across the range between 2 and 12 h, and found that the
separatrix did not move noticeably (data not shown).

As it is problematic to simultaneously visualise the phase
space in eight-dimensions, in Fig. 4 we offer more accessi-
ble illustrations of the DLEs in three-dimensional slices.
Fig. 4a illustrates the DLEs in the subspace containing
XIAP, caspase-8 and active caspase-8, whereas Fig. 4b
shows the DLEs in the subspace containing XIAP, active
caspase-8 and active caspase-3. Large DLEs (blue) define
a finite-time separatrix that identifies the points at which
the balance between XIAP and active caspase-8 shifts so
that the overall response changes from pro-apoptotic to anti-
apoptotic signals. We expected the apoptosis regulatory
network to have a separatrix because the cell’s response is
either survival or death – it is not graded (from alive to
sick to dead). If a system were to exhibit a more graded
response, the DLEs would have been more uniform across
phase-space and would not have yielded a discernible
separatrix.

The location and shape of the separatrix provide a frame-
work to generate conceptual interpretation of network oper-
ation. The separatrix shifts towards higher XIAP
concentrations as the amount of active caspase-8 increases
Fig. 4 Six-hour DLE defines a separatrix separating phase-space into pro- and anti-apoptotic decisions

Phase-space subplots are shown on a linear scale with initial conditions of XIAP and the active caspases ranging from 1�102 to 1�105, and 1�102 to
3.5 � 105 molecules/cell for the inactive caspases. All concentrations refer to initial conditions. The subspaces plotted were chosen to closely match
the protein concentrations in untreated HT-29 cells [S. Gaudet and K. Leitermann, personal communication]
a, b Large DLEs of the caspase-3 activation network at six hours define a separatrix. The blue curve is the separatrix which divides the phase-space
into regions where cells survive (to the right of the separatrix) or die (to the left of the separatrix)
a DLEs are shown in a subspace containing XIAP, active caspase-8, and inactive caspase-8 with 2.6 � 105 molecules/cell of inactive caspase-3 and
1 � 102 molecules/cell of active caspase-3 and the intermediate complexes. The gray curve highlights the separatrix, while the pro- and anti-
apoptotic regions are outlined in red and green, respectively
b DLEs are shown in the subspace containing XIAP, active caspase-8, and active caspase-3 with 2.6 � 105 molecules/cell of inactive caspase-3
and inactive caspase-8, and 1 � 102 molecules/cell of the intermediate complexes. The stars indicate reference points (individual cells with different
protein levels). The red and purple cells are pro-apoptotic while the green and orange cells are anti-apoptotic
c Separatrix shape is sensitive to rate constants. As the rate of ubiquitination is decreased (kd6 increased), the slope of the separatrix increases. The
DLEs are shown in the subspace containing XIAP and active caspase-8, with 2.6 � 105 molecules/cell of inactive caspase-3 and inactive caspase-8,
and 1 � 102 molecules/cell of the intermediate complexes and active caspase-3. From low to high, the rate constant kd6 has values 3.33 � 1025,
1.67 � 1024 and 8.3 � 1024 s21
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(Fig. 4a). Cells will die if above the separatrix, whereas
below the separatrix there is enough XIAP to overcome the
conversion of inactive caspase-3 to active caspase-3 by
active caspase-8. The separatrix shape is invariant to inactive
caspase-8, suggesting that the positive feedback activating
caspase-8 by caspase-3 has less influence than the regulation
of caspase-3 by active caspase-8 and XIAP. As XIAP tags
active caspase-3 for degradation, more XIAP would be
needed to rescue the cell from a death decision if there was
a higher initial concentration of active caspase-3 (Fig. 4b).
Fig. 4c shows perturbations to the separatrix as the ubiquiti-
nation rate constant is changed. As the rate increases, so does
the slope of the separatrix in the XIAP and active caspase-8
subspace. The slower the ubiquitination rate, the longer the
complex of active caspase-3 and XIAP will exist, effectively
lowering the concentration of free XIAP. We also observed
that the separatrix is not a simple plane – it curves at
higher concentrations of active caspase-8 and shifts slope
as the ubiquitination rate changes (Fig. 4c).

In addition to using the separatrix as a tool to help us
interpret the decision-making mechanisms of the network,
the separatrix quantitatively identifies the critical ratios of
initial conditions around which the cell response changes.
By comparing the location of different cells in phase
space to each other and the separatrix, we can evaluate
how differences in species concentrations affect differential
cell behaviour. It is informative to note that the location of a
cell in phase- or concentration-space affects how the
network reacts to signals. For example, consider two cells
in the pro-apoptotic section of phase-space that have differ-
ent XIAP concentrations (as indicated in Fig. 4b). The
purple and red starred cells are close to and far from the
separatrix, respectively. The red starred cell requires an
eight-fold increase in XIAP concentration to cross the
separatrix (to reach the green) while the purple starred
cell needs a modest two-fold increase. Alternatively, the
red starred cell could move to the separatrix by increasing
its XIAP concentration six-fold while decreasing its active
caspase-8 concentration by one half (orange star). If the
XIAP concentration is increased four-fold in both cells,
the cells will behave differently and only the purple
starred cell will cross the separatrix to survive. This
simple example illustrates that we need to know the cell’s
state (key species concentrations) before predicting
response. The DLE-defined separatrix helps us understand
how cells in different states can have disparate responses
to the same stimulation or perturbation.

3.3 Steady-state analysis cannot distinguish pro-
and anti-apoptotic responses across phase-space

Direct analysis of the set of nonlinear algebraic equations
representing our model at steady-state showed that the
system has four types of equilibria (that is, four invariant
manifolds filled with fixed points, in contrast to four
fixed points) with only one type being stable (Fig. 5a,
online supplementary materials). These stable fixed points
can have non-zero valued concentrations of caspase-8 and
XIAP. However, the concentration of caspase-3 must be
zero because any inactive caspase-3 would be activated
by caspase-8 and subsequently degraded by XIAP before
a steady-state is reached. The phase-space locations of
these stable fixed points are dependent on initial conditions.

To investigate whether these stable steady-states segre-
gate into pro- and anti-apoptotic clusters, we plotted the
steady-state locations from small subsets of trajectories.
Figs. 5b–d show active and inactive caspase-8 equilibrium
concentrations from different small sets of trajectories.
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Fig. 5 Stability and steady-state analyses of the caspase-3 acti-
vation network model

a Stability analysis shows one stable (purple) and three unstable
(green) types of fixed points (see online supplementary materials).
Every type of fixed point requires concentrations of zero for the inter-
mediate complexes. For each of the four fixed point types, there are
two or three species that can be nonzero. Green (unstable) and
purple (stable) circles indicate which species can be nonzero for
each type of fixed point.
b–e Steady-state locations in the caspase-3 activation network are
not globally clustered. Fixed points are plotted in the subspace
containing active and inactive caspase-8, with increasing initial
concentrations of inactive caspase-8: b 8.8 � 104, c 18 � 105 and
d 3.5 � 105 molecules/cell. Other initial conditions were 2.6 �
105 molecules/cell of inactive caspase-3, 1 � 102 molecules/cell of
active caspase-3 and the intermediate complexes, and 1 � 102–1 �
105 molecules/cell for active caspase-8 and XIAP. For each initial
concentration of inactive caspase-8 (b–d), the steady-states are mod-
erately clustered and are segregated by large DLEs (blue). However,
the fixed points from different inactive caspase-8 initial conditions
do not cluster when plotted together (e)
f Schematic compares the use of steady-state and DLE analysis
methods. In systems where steady-states localise to different regions
of phase space (left), steady-state analysis methods may be used to
characterise the phenotypic behaviour of the network. DLE analysis
can distinguish between behaviours in networks regardless of fixed
point clustering
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Within each set, the initial conditions of inactive caspase-8
were constant and most steady-states cluster into death or
survival locales. For example, cells that survive stimulation
with a death stimulus generally have low active and high
inactive caspase-8 concentrations because caspase-3 was
not activated enough to convert most of the inactive
caspase-8 to the active form. This suggests that within a
small set of initial conditions, a separatrix can be identified
by plotting stable fixed points.

However, when we plotted trajectories from a broader
range of initial concentrations of caspase-8, the ability to
distinguish cell fate based on steady-state locations is lost
(Fig. 5e). In contrast, DLEs can separate the two fates
without considering steady-state values. We have seen in
Fig. 4 that large DLEs can define a separatrix over a
broad set of initial conditions. For the small sets described
above, equilibria between the clusters have large DLEs
and separate the groups representing surviving and dying
cells (Figs. 5b–d). We conclude that DLEs are versatile
and can be applied regardless of whether or not
steady-states cluster by behaviour (Fig. 5f ).

4 Discussion

Our goal here is to develop an analysis methodology for
differential equation models aimed at understanding how
transient signals influence phenotypic responses, that is, to
develop signal-response relationships for most transient
response networks in higher cells. Many signal transduction
networks are transient response networks, meaning that they
affect phenotypic cell responses before a steady-state is
reached. Therefore the steady-state and bifurcation analysis
methods traditionally used to study differential equation-
based models do not find straightforward application to
transient response networks. To successfully analyse
complex networks, we required that our methodology be
applicable to transient signals across multiple dimensions.

Towards this challenging goal, we have described the use
of DLEs to study differential equation models of transient
response networks. DLEs measure the separation between
initially nearby trajectories in phase-space. We have used
DLEs to identify sensitive regions of phase-space where
small changes in the initial concentrations of network
species alter cell fate (Fig. 2). The separation can be calcu-
lated at any specific point in time, permitting prior biological
knowledge concerning the most relevant experimental
measurements to be leveraged. DLEs enable an exhaustive,
multi-dimensional analysis of transient signals because they
measure trajectory separation with respect to each dimension
across the entire phase-space. As a result, DLEs are capable of
identifying both important network interactions and in what
context they affect signalling (that is, at what time or under
which sets of initial conditions). By searching phase-space
for sensitive initial conditions (those with large DLEs), we
can identify surfaces (separatrices) that separate different
classes of signals. A separatrix specifies critical combinations
of species concentrations around which signalling changes
qualitatively. Because we can visualise the separatrix in
different regions of phase-space, DLE analysis enables us to
quantitatively interpret complex signalling interactions.

In applying DLE analysis to other biological signalling
networks, a few considerations must be explored. DLE
analysis is a numerical method which is flexible in the grid
resolution and finite-times chosen for evaluation. While
this flexibility is an asset for studying biological systems
which have different time scales and varying parameter sen-
sitivities, crude choices of time and phase-space grid may
not capture all separatrices of interest. Because of the
IEE Proc.-Syst. Biol., Vol. 153, No. 6, November 2006
continuous dependence of trajectories on initial conditions,
however, the DLE computation is a convergent procedure:
refined grids and longer integration times are guaranteed
to capture all separatrices. A second consideration is the
relative strength of rates at which trajectories diverge at
different locations in phase-space. Large rates of divergence
will dominate the calculations, possibly obscuring smaller
but biologically important trajectory separations.
Therefore it is important to select visualisation methods
that identify local features of the DLE field efficiently,
thereby ensuring that all key behaviours are illuminated.

As a particular example of current biological interest, we
applied DLE analysis to a model of caspase-3 activation
involving caspase-8 and XIAP. The model responds to a
pro-death stimulus with a transient signal leading to either
death or survival. This network is an example of a transient
response network: it has only one type of stable steady-state
and the survival against death decision is made before this
steady-state is reached. Because caspase-3 cleaves its sub-
strates irreversibly, key cell components will be degraded
before caspase-3 activity reaches steady-state. This notion
of transient response signalling in apoptosis differs from
some previously published models, which have cast this
phenomenon as a multiple steady-state problem and ana-
lysed it accordingly [29, 30]. Although some insights con-
cerning model parameter effects were gained in those
contributions, recent experimental studies focused on
dynamic and integrative measurement have demonstrated
that the key signals governing the phenotypic outcome of
cell death against survival are transient [28, 31]. Before
stimulation, this network rests at a basal steady-state.
Upon stimulation, a transient signal is produced during
which the life against death outcome is decided. Cells that
survive return to the basal state. Thus, all key physiological
signalling occurs during the transient phase.

While our model describes only a subset of the complex
network regulating caspase-3, the model has eight species
and is too complex to be comprehensively characterised
by inspection or parameter sensitivity analysis. Because
DLE analysis is time-dependent and multivariate, we were
able to gain specific insights about the regulation of
caspase-3 that most likely would have been overlooked
by inspection, single-parameter sensitivity analysis, or
steady-state analysis (Fig. 5f ). Large DLEs defined a separ-
atrix, from which we were able to gain quantitative, multi-
variate insight into the death against survival decision. The
separatrix classified two types of transient signals and
defined the conditions leading to apoptosis and survival
(Fig. 4). We observed that the shape of the separatrix is
not a simple plane and its shape and slope are dependent
on rate constants. This suggests that in cases where reac-
tions rates are hard to measure, the constant could be fit
by comparing an experimentally identified separatrix with
computationally predicted separatrices.

We envision DLE analysis as a tool for addressing chal-
lenging practical problems such as understanding the role
of cell population heterogeneity in disease diagnosis and
treatment. Others have described how population averages
differ from the behaviour of single cells by using population
heterogeneity [18, 29]. DLE analysis can be used to investi-
gate a key tangential question: How does population hetero-
geneity of protein expression correlate with different
single-cell behaviours in a population of cells? To study
the effects of noise and variability in protein expression
within a population of cells, we can compare the concen-
tration distributions of key proteins with separatrices.
Intersections between these distributions and separatrices
should correlate with heterogeneous responses. For
431



example, when cells are treated with a saturating concen-
tration of TNF, a death-inducing ligand, only approximately
60% of a population of HT-29 cells die [28]. While not
understood in quantitative terms, the TNF receptor is
known to activate both pro-survival and pro-apoptotic path-
ways. The pre-death inducing signalling complex activates
the nuclear factor-kB (NF-kB) pathway (a pro-survival
pathway that upregulates XIAP) before activating
caspase-8 and the mitochondrial pathway. Activation of
the mitochondrial pathway causes the mitochondria to
release Smac, a pro-apoptotic protein which inhibits XIAP.
It is likely that within a cell population, basal protein
expression variation can affect network behaviour by chan-
ging the concentrations of key regulatory proteins such as
XIAP. In the future, the phase-space locations of HT-29
cells could be determined experimentally by measuring the
distribution of caspase-3, caspase-8 and XIAP expression
levels. By evaluating their proximities to the separatrix, we
could determine if the distribution of protein expression
levels in a cell population can cause a heterogeneous
response to TNF treatment. Eventually, we anticipate that
DLE analysis can help us understand the transformation of
a cell from a healthy to diseased state, and identify what
changes in species concentrations are required to move the
diseased cell across the separatrix to a healthier condition.
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