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Lagrangian coherent structures from approximate velocity data
G. Haller
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139

~Received 6 September 2001; accepted 20 March 2002; published 2 May 2002!

This paper examines whether hyperbolic Lagrangian structures—such as stable and unstable
manifolds—found in model velocity data represent reliable predictions for mixing in the true fluid
velocity field. The error between the model and the true velocity field may result from velocity
interpolation, extrapolation, measurement imprecisions, or any other deterministic source. We find
that even large velocity errors lead to reliable predictions on Lagrangian coherent structures, as long
as the errors remain small in a special time-weighted norm. More specifically, we show how model
predictions from the Okubo–Weiss criterion or from finite-time Lyapunov exponents can be
validated. We also estimate how close the true Lagrangian coherent structures are to those predicted
by models. ©2002 American Institute of Physics.@DOI: 10.1063/1.1477449#
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I. INTRODUCTION

Two-dimensional chaotic advection in time-period
fluid velocity fields is closely associated with the presence
invariant manifolds.1 For the period-one map, or Poinca´
map, these manifolds appear as stable and unstable m
folds of hyperbolic fixed points. Unstable manifolds act
attracting material lines that create global folding patterns
passive tracers; stable manifolds act as repelling mate
lines that are responsible for stretching of tracer blobs. A
vective mixing is therefore governed by stable and unsta
manifolds, or in other words,hyperbolic material lines.

Recent progress in nonlinear dynamics has extended
above picture to velocity fields with aperiodic or even turb
lent time dependence. While no Poincare´ maps are available
in this context, families of hyperbolic material lines contin
to organize tracer mixing. These families are formed
finite-time stable and unstable manifolds of special~nonpe-
riodic! fluid trajectories.2,3 Several algorithms for the extrac
tion of such hyperbolic material lines have been propos
with a notable emphasis on geophysical applications.4–12

Although the extraction algorithms have performed w
on interpolated two-dimensional velocity data, the effect
data processing and measurement errors on the resul
remained unclear. When performed with care, data proc
ing, such as velocity interpolation or extrapolation, provid
a velocity field that is arguably close to the true field. Sim
larly, careful experimental techniques lead to a data set
is close to the true velocity field. Closeness in the Euler
sense, however, does not imply closeness in the Lagran
sense. Indeed, local errors in the calculation of fluid traj
tories will accumulate and lead to growing errors in parti
positions. Because all known methods for locating hyp
bolic material lines use particle positions, one has to cont
with large errors or even spurious structures that are artif
of the processing techniques. Classic dynamical systems
timates only reinforce one’s concerns: They indicate ex
nential separation between Lagrangian truth and its appr
mation. Another dynamical systems principle, the robustn
1851070-6631/2002/14(6)/1851/11/$19.00
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of hyperbolic sets under small enough perturbations, off
no help in practical examples where velocity errors typica
lie outside the range of perturbation theory.

This paper will provide general estimates for the acc
racy of invariant manifold reconstruction from velocity mo
els. By a model velocity field, we simply mean a tim
dependent data set that one obtains after refining s
numerical or experimental velocity data. The difference b
tween the true and model velocity fields may result from t
refinement, as well as from additional deterministic errors
data generation and data acquisition.

We show that as long as the model and the true velo
field are close in a time-weighted normi • iw , a hyperbolic
material line of the model data set signals a hyperbolic m
terial line in the true flow. To evaluate our closeness crite
one needs to estimate the attraction or repulsion rate of
model material line, and the magnitude of the velocity err
We give two different formulations, with different ways o
estimating the attraction and repulsion rates. Our first res
Theorem 1, uses rates inferred from a Lagrangian Okub
Weiss criterion,2 while our second result, Theorem 2, us
rates obtained from a direct Lyapunov exponent calculatio7

The main lessons from our analysis are independen
the invariant manifold extraction method, and can be su
marized as follows. First, even large modeling errors are
missible, if they are localized in time. Large errors are a
admissible if the hyperbolic material line found in the mod
attracts or repels strongly enough, or its time of existenc
long enough. These conclusions follow because the we
function in the normi • iw turns out to decay exponentiall
in time ~see Fig. 1!.

Second, true and model trajectories may separate e
nentially, but true and model hyperbolic material lines w
not. In other words, errors in individual particle paths w
spreadalong hyperbolic material lines; errors transverse
hyperbolic material lines remain small~see Fig. 2!.

Third, maximizing curves of particle separation plo
~such as relative dispersion, finite-time or finite-si
1 © 2002 American Institute of Physics
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1852 Phys. Fluids, Vol. 14, No. 6, June 2002 G. Haller
Lyapunov exponent plots! are hyperbolic material lines i
and only if the Lagrangian rate of strain is nonzero alo
them. This result enables one to distinguish hyperbolic m
terial lines from lines of high shear in particle separati
plots ~see Example 3 of Sec. VI!.

To establish the above conclusions, we use a finite-t
invariant manifold approach.2 Along a candidate trajectory
we select a coordinate frame in which stretching and co
pression separate at leading order. Working in this frame,
construct repelling and attracting material lines as finite-ti
hyperbolic invariant manifolds. In our arguments, the int
polation error does not need to be continuous in time, bu
has to be Lipschitz continuous in space. Accordingly,
hyperbolic material lines we locate are Lipschitz in spa
and continuous in time.

The organization of this paper is as follows. In Sec. II w
fix notation. Section III contains our first result on the adm

FIG. 1. The graph of the weight functionwt(t) for the norm i • iw

5maxtP[t0 ,t1]*t0

t1u • u wt(t) dt, in which the modeling error must be small fo

good predictions on hyperbolic material lines. The peak valuewt(t) is al-
ways att5t. ~a! wt(t) with t54 for a typical hyperbolic material line of
the model velocity data over the time interval@0,10#. ~b! wt(t) with t
54 for a strongly hyperbolic material line~c! wt(t) with t58 for a ma-
terial line with a longer interval of hyperbolicity.

FIG. 2. Schematic relationship between modeled and true attracting ma
lines ~finite-time unstable manifolds!. Note that, unlike hyperbolic materia
lines, modeled and true trajectories will generally separate exponential
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sible modeling error and on the accuracy of invariant ma
folds for the Lagrangian Okubo–Weiss criterion. Section
gives a similar result for manifolds obtained from finite-tim
Lyapunov exponent calculations. Section V briefly expla
how our theorems can validate invariant manifold pred
tions by other Lagrangian diagnostic tools, such as finite-s
Lyapunov exponents, relative or absolute dispersion, and
tropy. Section VI offers simple examples that demonstr
the use of our criteria in applications. A summary and a
of open problems conclude the paper in Sec. VII. We encl
the proofs of our theorems in the Appendix.

II. NOTATION AND DEFINITIONS

Consider a two-dimensional velocity field

ẋ5v~x,t !5u~x,t !1m~x,t !, ~1!

wherev(x,t) denotes the true velocity field, u is the model
velocity field that one intends to use for Lagrangian d
analysis, andm(x,t) is the modeling error. In this paperm is
assumed to be a deterministic function that may arise fr
interpolatingv between gridpoints, from extrapolatingv to
unknown domains or boundary points, or from errors in v
locity measurement. In all our arguments, the spatial varia
x is taken from a bounded domainD, and the model fieldu
is defined over a finite time intervalI.

We assume that the model velocityu is twice continu-
ously differentiable in space, and its second derivative ob
the bound

u¹2u~x,t !u<C, ~2!

for some nonnegative constantC. We further assume tha
m(x,t) satisfies

um~x,t !u<B~ t !, um~x,t !2m~ x̃,t !u<L~ t !ux2 x̃u, ~3!

for all x, x̄PD andtPI. In other words, we assume thatm is
bounded and Lipschitz inx with Lipschitz constantL(t).
Note that we allowm to jump in time at any spatial location
within D. Finally, we assume that a trajectoryx̄(t) of the
model velocity fieldu(x,t) is known

d

dt
x̄~ t !5u~ x̄~ t !,t !.

To fix terminology, we recall that a material line of th
velocity field is a continuous time-dependent curveM(t)
advected by the model flow. We callM(t) a repelling ma-
terial line over a time intervalI if infinitesimal perturbations
off this line grow monotonically under the linearized flow3

We call M(t) an attracting material lineover I if it is a
repelling material line overI in backward time.~For ex-
ample, the local stable manifold of a fixed pointp of a Poin-
caré map is a repelling material line over any finite tim
interval.! We refer to attracting and repelling material line
jointly as hyperbolic material lines.

ial
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1853Phys. Fluids, Vol. 14, No. 6, June 2002 Lagrangian coherent structures
III. LAGRANGIAN STRUCTURES FROM THE
OKUBO–WEISS CRITERION

The gradient ofu along x̄(t) is given by the time-
dependent matrix¹u( x̄(t),t). We assume that over som
finite time intervalI 5@ t0 ,t1# within I, we have

det¹u~ x̄~ t !,t !,0, ~4!

which implies that¹u( x̄(t),t) has real eigenvalues

2l1~ t !,0,l2~ t !. ~5!

We recall that Okubo13 and Weiss14 identify the spatial re-
gion satisfying det¹u(x,t),0 as hyperbolic. Here hyperbo
licity is meant in an instantaneous Eulerian sense; Lagra
ian hyperbolicity ofx̄(t) would only follow if x̄(t) were a
fixed point andu were a steady velocity field.

We seek to answer the following question: Under wh
conditions doesx̄(t), a model trajectory staying in th
Okubo–Weiss hyperbolic region, indicate the existence
nearby hyperbolic material lines in the true flow? We start
defining the quantities

lk min5min
tPI

lk~ t !, k51,2, lmin5min~l1 min,l2 min!,

~6!

which measure the minimum of the norm of the eigenval
lk(t). We also define the eigenvectorse1(t) ande2(t) corre-
sponding to2l1(t) and l2(t), and assume that they ar
normalized touek(t)u51, and are chosen such thatek(t) de-
pends smoothly ont. Using the matrix of eigenvectorsT(t)
5@e1(t),e2(t)#, we define the two quantities

a5min
tPI

udetT~ t !u, b5max
tPI

iṪ~ t !i , ~7!

with iṪi5AS i , j Ṫi j
2 denoting the norm of the matrixṪ. Note

that a is a measure of the minimal angle between the t
eigenvectors, whileb measures the maximal rate at whic
the eigenvectors change.

As it turns out below, it is not the actual error, but rath
its weighted norm along the model trajectoryx̄(t) that affects
the existence of Lagrangian structures in the true data
The weight function we obtain in our mathematical arg
ments is

wt~t!5H e2*t
tl1(s)ds if tP@ t0 ,t !

e2* t
tl2(s)ds if tP@ t,t1#

, ~8!

where the time parametert is taken from the intervalI
5@ t0 ,t1#. For a typical shape ofwt(t), we refer the reade
back to Fig. 1. Usingwt(t), we define two measures of th
modeling error

Bw5max
tPI

E
t0

t1
B~t!wt~t! dt,

Lw5max
tPI

E
t0

t1
L~t!wt~t! dt.
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Note that a large spike in the error will still be small in term
of these measures, as long as its duration is short. Also
that along a trajectory with largerlk , the same Eulerian
error will produce smallerBw andLw values.

Finally, we define the distance

D55
almin22A2b

2A2C
if C.0

2lmin

almin22A2b
if C50

, ~9!

for use in our main theorem. Note thatC50 arises for linear
model velocity fields. We include the linear case in our d
cussion for completeness, and for use in our later examp

Theorem 1: Suppose that along a trajectoryx̄(t) of the
model velocity fieldu, condition~4! is satisfied. Assume fur
ther that

lmin.2A2
b

a
, BwC,

~almin22A2b!2

8lmin
, ~10!

and

Lw,
almin22A2b

2A2lmin

. ~11!

Then

~i! the model trajectoryx̄(t) is contained in a hyperbolic
material lineM(t) over the time interval I;

~ii ! the true velocity fieldv(x,t) admits a hyperbolic ma-
terial line N(t) which is at leastD-close toM(t)
near the trajectoryx̄(t).

We will prove Theorem 1 in Appendix A.

IV. LAGRANGIAN STRUCTURES FROM FINITE-TIME
LYAPUNOV EXPONENTS

We now move on to discuss the relevance of finite-tim
Lyapunov exponent calculations on the model field for t
true velocity fieldv. Let Ft(x0) denote the current position o
the fluid trajectory that started from the pointx0 at time t0 .
We again fix a particular trajectoryx̄(t)5Ft(x0) of the
model velocity fieldu over the time intervalI 5@ t0 ,t1#.

Infinitesimal perturbations tox̄(t) satisfy the equation

j̇5¹u„x̄~ t !,t)j, ~12!

which admits the solution

j~ t !5¹Ft~x0!j0 .

Assuming that¹Ft(x0) is known for anytPI , we define the
time-dependent scalar field

s t~x0!5lmax~@¹Ft~x0!#* ¹Ft~x0!!, ~13!

the maximal eigenvalue of the Cauchy–Green strain ten
field @¹Ft(x0)#* ¹Ft(x0). ~Here * refers to matrix transpo-
sition andlmax(A… denotes the maximal eigenvalue of a m
trix A.! Note thatAs t(x0) gives the maximal stretch tha
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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solutions of ~12! will experience over the time interva
@ t0 ,t#. As argued by Haller,7 hyperbolic material lines att
5t0 tend to be local maximizing curves ofs t(x0). To avoid
deriving extra conditions that exclude special degene
cases, we shall simply assert that finite-time hyperbolic m
terial lines are local maximizing curves of thes t(x0), i.e.,
the value ofs t is nonincreasing in directions normal to the
material lines. We require ‘‘nonincreasing’’ instead of ‘‘de
creasing’’ because no finite-time hyperbolic material line c
be locally unique.2

To illuminate the meaning ofs t further, we recall that

DLEt„x0)5
1

2~ t2t0!
logs t~x0!,

is just the maximaldirect finite-time Lyapunov exponen

~DLE! associated with the trajectoryx̄(t). In this context,
‘‘direct’’ means the exponent is computed directly from
definition, i.e., from differentiating fluid trajectories with re
spect to their initial positions. Contour plots of DLEt„x0)
usually reveal more local maximizers of stretching than t
of s t(x0); this is why the DLE field is typically better suite
for Lagrangian data analysis than thes t(x0) field.

We now use the DLE field to infer the location of hype
bolic material lines in the flow. We start by selecting a u
vectores based at the initial positionx0 . This unit vector will
be a candidate for a tangent vector to thet5t0 section of a
repelling material line containingx̄(t). As follows from Ref.
7, if t12t0 is large enough then a good choice fores is given
by

es„x0)5
¹s t1

~x0!'

u¹s t1
~x0!'u

, ~14!

i.e., by a unit vector tangent to the contour curve ofs t1
(x0)

passing throughx0 . ~Herea' denotes a vector normal to th
vectora with ua'u5uau.) Shown in Fig. 3, this choice fores

is motivated by the observation thats t(x0) admits a ridge
along thet5t0 slice of the locally strongest repelling mat
rial line.

If the point x0 is contained in such a ridge
¹s t(x0)'/u¹s t(x0)u will produce a unit vector that is ap
proximately tangent to the ridge~see Fig. 4 for a numerica
example!. As Fig. 4 shows, formula~14! indeed produces
correctly oriented tangent vectors for the strongest repel
material lines. For weaker lines, more refined choices oes

may work better.

FIG. 3. The choice of the unit vectores(x0).
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We now repeat the above construction in backward ti
for a unit vectoreu , a candidate for a tangent to thet5t0

slice of an attracting material line that containsx̄(t). Again,
a simple choice foreu is

eu„x0)5
~¹Ft1!21¹s t0

~ x̄~ t1!!'

u~¹Ft1!21¹s t0
~ x̄~ t1!!'u

, ~15!

wheres t0
( x̄(t1)) is based at positions at timet1 and is com-

puted in backward time up to timet0 . In the formula above,
the tangent vector¹s t0

( x̄(t1))' for the level curve of

s t0
( x̄(t1)) through x̄(t1) is mapped back to the initial con

figuration att5t0 by the inverse of the linearized flow map
In other words,eu(x0), as defined above, is the inverse im
age of an approximate tangent vector to the candidate att
ing material line att5t1 . Again, other choices foreu(x0) are
possible. For instance, if velocity data is also availa
over the time interval@ t21 ,t0# for some t21,t0 , then a
choice analogous to~14! gives eu(x0)5¹s2t1

(x0)'/
u¹s2t1

(x0)'u.
We now define quantities whose role turns out to

similar to that of the quantities featured in the previous s
tion. To emphasize this analogy, we use the same notation
these quantities, even though their actual definition will
different in our current context.

For any fixed initial positionx0 , we introduce the nor-
malized Lagrangian strain rates

l1~ t !52
^es ,¹Ft* S¹Ftes&

^es ,¹Ft* ¹Ftes&
,

~16!

l2~ t !5
^eu ,¹Ft* S¹Fteu&

^eu ,¹Ft* ¹Fteu&
,

where S refers toS( x̄(t),t)5 1
2@¹u( x̄(t),t)1¹u( x̄(t),t)* #,

the rate-of-strain tensor evaluated along the trajectoryx̄„t) at
time t. We again assume that

FIG. 4. The contours ofs t(x0), and thees(x0) vector field—as defined in
~14!—for a two-dimensional barotropic turbulence simulation.@See Haller
and Yuan~Ref. 3! for details.#
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1855Phys. Fluids, Vol. 14, No. 6, June 2002 Lagrangian coherent structures
2l1~ t !,0,l2~ t !, ~17!

holds over the time intervalI 5@ t0 ,t1#, and define

lkmin5min
tPI

lk~ t !, k51,2, lmin5min~l1min,l2min!.

We stress that~17! requires the two Lagrangian strainsl i(t)
to keep their signs all over the intervalI.

Next we define

a5min
tPI

udet@¹Ftes ,¹Fteu#u

u¹Ftesuu¹Fteuu
, ~18!

a constant that measures the minimal separation betwee
vected counterparts of the initial vectorses andeu . We also
re-introduce the following measures of modeling error fro
the previous section:

Bw5max
tPI

E
t0

t1
B~t!wt~t! dt, Lw5max

tPI
E

t0

t1
L~t!wt~t! dt.

Finally, we redefine the distanceD form the previous section
as

D55
almin

2A2C
if C.0

2

a
if C50

. ~19!

We are now ready to state a result analogous
Theorem 1.

Theorem 2: Suppose that along a trajectoryx̄(t) of the
model velocity fieldu, condition ~17! is satisfied. Assume
further that

BwC,
a2lmin

8
~20!

and

Lw,
a

2A2
. ~21!

Then

~i! the model trajectoryx̄(t) is contained in a hyperbolic
material lineM(t) over the time interval I;

~ii ! the true velocity fieldv(x,t) admits a hyperbolic ma-
terial line N(t) at leastD-close toM(t).

We prove this theorem in Appendix B. In the spec
case of zero modeling error (Bw5Lw50), statement~i! of
the theorem givesD50—which means that a hyperboli
material line passes through the pointx0 . This observation
implies the following result.

Theorem 3: A local extremum curve l of the scalar fie
s t corresponds to a repelling material lineM(t) ~with
M(t0)5 l ) if

^es ,¹Ft* S¹Ftes&,0, ^eu ,¹Ft* S¹Fteu&.0 ~22!

hold for all tPI along l.
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
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The sufficiency of condition~22! in the above statemen
follows from Theorem 2 after settingBw5Lw50.

Two remarks are in order. First, an inspection of t
proof of Theorem 2 shows that ifes is not just an approxi-
mate but anexact tangent vector to the candidate mater
line M(t), then conditions~22! become necessary forM(t)
to be a repelling material line.@This is because the linea
instability of M(t) necessarily implies~22!, as seen from
~B2!.#

Second, the proof of Theorem 2 does not depend on
particular choice of the vectorses andeu . As we noted ear-
lier, ~14! and~15! are plausible choices, but other candida
can also be used. As long as these candidates satisfy~22!, the
repelling nature ofM(t) follows.

V. IMPLICATIONS FOR OTHER LAGRANGIAN
DIAGNOSTIC TOOLS

Theorem 3 can validate predictions by any Lagrang
method for locating hyperbolic coherent structures from fl
data. Specifically, maximum curves of finite-time Lyapun
exponents,15–17 finite-size Lyapunov exponents,12 relative
dispersion,6,10,18,19or entropy,19 as well as lines of disconti-
nuity of absolute dispersion or patchiness20 all indicate
finite-time hyperbolic material lines as long as the Lagran
ian strain conditions~22! hold along them. Verifying these
strain conditions requires the identification of the vectorse0

s

ande0
u , and the estimation of the modeling error.

VI. EXAMPLES

In this section, we give examples where our theore
can be evaluated analytically. The purpose of these exam
is to give the reader a feel for the qualitative meaning of
results; more complex numerical velocity models will b
treated elsewhere.

Example 1: The simplest example for the application
Theorem 1 is given by the velocity field

v~x,t !5A~ t !x1m~x,t !,

where the coefficient matrixA(t) is of the form

A~ t !5S 2l~ t ! 0

0 l~ t !
D ,

with some continuous functionl(t).0. We assume the ve
locity error m(x,t) to be Lipschitz inx with Lipschitz con-
stantL(t) for any fixedtPI @see~3!#. We also assume tha
um(x,t)u,B(t) for tPI .

Sinceu(x,t) is linear, we haveC50 @see~2!#. Further-
more, the eigenvectors ofA(t) are constant and orthogona
thus ~7! gives a51, b50. We also see that for any finit
time intervalI,

lmin5min
tPI

l~ t !.

Then Theorem 1 guarantees the existence of a repelling
terial line N(t) nearx50, provided that

max
tP[ t0 ,t1]

E
t0

t1
L~t!wt~t! dt,

1

A2
.

P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1856 Phys. Fluids, Vol. 14, No. 6, June 2002 G. Haller
Moreover, by Theorem 1, the distance ofN(t) from the ori-
gin x50 is less than

D52.

Notice that the magnitude of the modeling error is n
constrained by the above results: Only the Lipschitz cons
of the error must obey a bound. The reason for only a sin
condition is the linearity ofu, which causesC to vanish.

Since the model velocity field can be solved explici
by exponentiating the matrixA(t), applying Theorem 2 to
the above example will lead to the same result.

Example 2: To illustrate the application of Theorem 2
we consider the velocity field

v~x,t !5A~ t !x1f~x,t !1m~x,t !, ~23!

with

A~ t !5S sin 2vt v1cos 2vt

2v1cos 2vt 2sin 2vt D , f~x,t !5S 0

1
3 x1

3D .

Again, we assume thatm(x,t) is Lipschitz inx over the box

Ud0
5$xPR2 u ux1u<d0%,

with Lipschitz constantL(t). We also requirem(x,t) to be
bounded in norm byB(t). Note that withinUd0

, we have the
estimate

u¹2u~x,t !u<C[2d0 . ~24!

For uvu.1, the eigenvalues of¹u(0,t)5A(t) are
6 iAv221. This eigenvalue configuration does not satis
the basic assumptions of Sec. III: thexÄ0 stagnation point is
not Okubo–Weiss hyperbolic. Following the approach
Sec. IV instead, one finds that¹Ft(0) can be calculated ex
plicitly:

¹Ft~0!5S cosvt 2sinvt

sinvt cosvt D S e2t 0

0 etD . ~25!

This formula shows that the origin is finite-time hyperbo
over any time intervalI. For m[0, classic invariant manifold
theorems guarantee thatx50 admits stable and unstab
manifold in the extended phase space. These manifolds
tangent to the stable and unstable bundles of¹Ft(0); the
asymptotic decay rates of solutions in them are given bye7t

in forward and backward time, respectively.
Based on the above, the scalar fields t(x0) will admit a

local maximizing curve that contains thex̄50 solution of the
model velocity field. This curve is the DLE approximation
the t5t0 slice of the local stable manifold of the origin. Fo
large enought, the maximizing curve becomes close enou
to the actual stable manifold, and hence the vectores(0)
defined in~14! becomes a good approximation for the ta
gent of the manifold at the origin. In that case,~16! gives
l1(t)51. Similarly, a backward-time DLE calculation yield
l2(t)51, which then gives

lmin51.

Furthermore, as seen from~25!, the two vectorses(0) and
eu(0) are orthogonal, leading to thea value @see~18!#
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These observations give the following form of condition~20!
in this example:

Bw5max
tPI

E
t0

t1
B~t!wt~t! dt<

1

16d0
, ~26!

imposing the upper bound

d0<
1

16Bw
~27!

on the size of theUd0
ball in our analysis. At the same time

an inspection of the proof of Theorem 1 shows that hyp
bolic material lines can be constructed in theUD box around
the origin, withD defined in~19!. This observation implies
that we must haveD51/(4A2d0),d0 , or equivalently,d0

.1/(2A4 2), which together with~27! gives the condition

Bw,
A4 2

8
'0.1487. ~28!

As for condition~21! of Theorem 1, we obtain

Lw5max
tPI

E
t0

t1
L~t!wt~t! dt<

1

2A2
'0.3536. ~29!

We conclude that if~28! and~29! are satisfied, then Theorem
2 gives the existence of attracting and repelling material li
within the UD ball for the true velocity field~23! with

D5
1

4A2d0

,
A4 2

2A2
'0.4204. ~30!

As a simple example, let us fix the time intervalI
5@0,10#, and consider the spatially uniform velocity erro
m(t)5(0,m2(t)) with

m2~ t !55
0 if 0<t<4.95

3~ t24.95! if 4.95,t<5

23~ t25.05! if 5 ,t<5.05

0 if 5.05,t<10

.

The magnitude ofum(t)u5B(t) is shown in Fig. 5. We find
the time-weighted measures of the velocity error to be

Bw50.1476, Lw50.

FIG. 5. Spiky velocity error over the time intervalI 5@0,10#. The magni-
tude of the error increases linearly from zero to one over the inte
@4.95,5#, and decreases back to zero linearly over the interval@5,5.05#.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 6. The DLEt(x0) field for Example 2, witht050 andt510. The circle indicates the location of the ballUD . ~a! Model velocity field;~b! true velocity
field.
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The first of these measures is obtained from numerical i
gration, while the second one is zero because the mode
error is independent ofx. These values satisfy the inequa
ties ~28! and ~29!, thus a hyperbolic material lineN(t) near
the origin will survive in the true velocity field. We obtai
from Theorem 1 and~30! that the distance ofN(t) from the
origin does not exceedD50.4204.

We show the results of a DLE calculation for the mod
and for the true velocity field in Fig. 6. Since our calculatio
have remained independent of the parameterv, we selected
v50 in our simulation to minimize numerical errors. Th
figure shows that while the global stable manifold—an
tracting material line—of the model velocity field deform
noticeably, it does survive the effect of the spiky error ter
and remains close to its original position within the ballUD .

Example 3: This example will show how Theorem
distinguishes spurious maximizing curves of Lyapun
exponents—arising from maximal shear—from hyperbo
material lines. Let us consider a parallel shear flow of
form

v~x,t !5S u~y!

0 D , x5S x

yD .

The trajectories satisfy

x~ t !5x01u~y0! ~ t2t0!, y~ t !5y0 , ~31!

from which we obtain

¹Ft~x0!5S 1 u8~y0! ~ t2t0!

0 1 D , ~32!

with prime denoting differentiation with respect toy0 . This
formula shows that the Cauchy–Green strains t only de-
pends on they0 coordinate of an initial conditionx0

5(x0 ,y0). An implicit differentiation of the characteristic
equation of the matrix@¹Ft(x0)#* ¹Ft(x0) further yields
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
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2u8u9~ t2t0!2s t

2s t1~u8!2 ~ t2t0!212
,

~33!

s t95
2s t@~u9!21u8u-#22~s t8!2

2s t1~u8!2 12
.

Assume now thatu8 is positive and locally maximal aty0

5h, i.e.,

u8~h!.0, u9~h!50, u-~h!,0.

We show the corresponding velocity profile in Fig. 7.
By ~33!, we have

s t8~h!50, s t9~h!5
2s t~h!u8~h!u-~h!

2s t~h!1~u8~h!!212
,0,

which shows that they05h line is a local maximizing curve
for s t(y0) and hence for the direct Lyapunov exponent fie
DLEt„x0). Yet, as~31! shows, no hyperbolic material line
~stable or unstable manifolds! exist in this flow. Therefore, as
we noted earlier, local maximizing curves of Lyapunov e
ponent plots do not imply local hyperbolicity in the flow
they may also be indicators of high shear.

FIG. 7. Velocity profile for Example 3.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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We now show how Theorem 3 reveals that the abo
maximizing curve of the Lyapunov exponent field is a no
hyperbolic material line. From~14!, ~32!, and from the defi-
nition of the rate of strain we obtain

es~x0!5S 1

0D , S5
1

2 S 0 u8

u8 0 D ,

¹Ft* S¹Ft5
1

2 S 0 u8

u8 2~u8!2D ,

which leads to

^es,¹Ft* S¹Ftes&[0

or l1(t)[0. Therefore, even thoughy05h is a local maxi-
mizer of the finite-time Lyapunov exponent field DLEt„x0),
it is a nonhyperbolic material line by our first remark aft
Theorem 3.

VII. CONCLUSIONS

In this paper we have examined the relevance of
grangian coherent structures—finite-time stable and unst
manifolds extracted from model velocity data—for the tr
flow. We have found that Lagrangian coherent structures
surprisingly robust: even large velocity errors will preser
them as long as those errors are small in a special ti
weighted norm. The weight function in this norm turns out
decay exponentially in time, allowing for temporally loca
ized spikes in both the error and its gradient.

In more mathematical terms, Theorems 1 and 2 g
conditions under which the modeling error can be viewed
a small perturbation to the flow map, the map that ta
initial particle positions att5t0 to later positions att5t1 . In
this sense, this paper provides a quantitative relation betw
deterministic Eulerian errors and their effect on the fini
time Lagrangian flow.

We summarized our main qualitative results in the Int
duction. We have also shown the quantitative use of our
teria through simple examples in Sec. VI. An application
these criteria to surface velocity measurements in Monte
Bay will appear elsewhere.

A much-needed extension of our analysis would inc
porate stochastic terms in the velocity error. Prelimina
work in this direction indicates a similar robustness of L
grangian coherent structures for stochastic noise, altho
under somewhat different conditions.

A further extension of interest will be the treatment
three-dimensional~3D! flows. Such an extension appea
plausible based on the available 3D extensions for the
grangian Okubo–Weiss criterion and for the direct Lyapun
exponent algorithm.7
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APPENDIX A: PROOF OF THEOREM 1

1. Setup

As in Ref. 2, we start by introducing the change of c
ordinatesy5x2 x̄(t), which puts~1! in the form

ẏ5¹u~ x̄~ t !,t !y1m~ x̄~ t !1y,t !1O~ uyu2!, ~A1!

where theO(uyu2) terms also depend ont. We recall that the
matrix T(t) contains the normalized real eigenvectors
¹u( x̄(t),t) that exist under assumption~4!. We pass to
eigenbasis alongx̄(t) by letting y5T(t)z, which yields the
transformed system

ż5L~ t !z1R~z,t !1P~z,t !2Q~z,t !, ~A2!

with

L~ t !5diag ~2l1~ t !,l2~ t !!,

R~z,t !5T21~ t !m~ x̄~ t !1T~ t !z,t !

and

P~z,t !5O~ iT21iuTzu2!, Q~z,t !5T21Ṫz.

From the definitions ofa, b, C, andB(t), we obtain

uP~z,t !u<
A2C

2a
uzu2, uQ~z,t !u<

A2b

a
uzu.

uR~z,t !u<
A2

a
B~ t !, uR~z,t !2R~ z̃,t !u<

A2

a
L~ t !uz2 z̃u.

2. Integral equations

As in Ref. 2, we fix two small constantsd,d.0 and
modify ~A2! in a C` fashion so that the modified vector fiel

ż5L̄~ t !z1R̄~z,t !1P̄~z,t !2Q̄~z,t !, ~A3!

becomes Lipschitz for allzPR2 and tPR, coincides with
Eq. ~A2! for uzu<d and tP@ t01d,t12d#, and obeys the
estimates

L̃11~ t !<2l1min,0,l2min<L̃22~ t !,

L̃12~ t !5L̃21~ t ![0, tPR,

uP̄~z,t !u<d
A2C

2a
uzu, uQ̄~z,t !u<

A2b

a
uzu,

uR̄~z,t !u<
A2

a
B~ t !, uR̄~z,t !2R̄~ z̄,t !u<

A2

a
L~ t !uz2 z̄u,

P̄~z,t !5Q̄~z,t ![0 and B~ t !5L~ t ![0

for t¹@ t0 ,t1# or uzu.2d. ~A4!

For more details of this construction see Ref. 2 or 7.
We introduce the notation

z5~zs ,zu!, P̄5~ P̃s ,P̃u!, Q̄5~Q̃s ,Q̃u!,

R̄5~R̃s ,R̃u!, l̃15L̃11, l̃25L̃22,

then drop the tildes and integrate~A3! to obtain
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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zs~ t !5e2* ts

t l1(t)dtzs~ ts!1E
ts

t

e2*t
tl1(s)ds

3@Ps~z~t!,t!1Qs~z~t!,t!1Rs~z~t!,t!#dt,

zu~ t !5e* tu

t l2(t)dtzu~ tu!1E
tu

t

e*t
tl2(s)ds

3@Pu~z~t!,t!1Qu~z~t!,t!1Ru~z~t!,t!#dt.

~A5!

We want to construct an invariant setN that contains
bounded solutions to the above integral equation. If n
empty,N will be an exceptional invariant set because m
solutions nearz50 grow due to the positive exponent in th
second equation of~A5!. Once a solution leaves the 2d-ball
outside which the velocity field is linear, it will further grow
without bound. As we shall see, the subset ofN falling in the
interval tP@ t01d,t12d# serves as a finite-time stable set f
a trajectory that is close to the original solutionx̄(t) of the
model velocity field.

For any fixed initial timet0 , we first defineN(t0) as

N~ t0!5$z0usupt>t0
uz~ t;z0!u,`%, ~A6!

wherez(t0 ;z0)5z0 . Note thatN(t0) is a positively invariant
family of sets indexed byt0. Furthermore, for any fixedt
PR and for any potential solutionz(t)PN(t), we have

lim
tu→`

ue* tu

t l2(t) dtzu~ tu!u<K lim
tu→`

e* tu

t l2(t) dt50.

As a result, taking the limittu→` in ~A5!, settingts5t0 and
zs(ts)5zs , we obtain the following integral equation for so
lutions in $(N(t),t) u tPR%:

zs~ t !5e2* t0

t l1(t)dtzs1E
t0

t

e2*t
tl1(s)ds

3@Ps~z~t!,t!1Qs~z~t!,t!1Rs~z~t!,t!#dt,
~A7!

zu~ t !5 È t

e*t
tl2(s) ds@Pu~z~t!,t!1Qu~z~t!,t!

1Ru~z~t!,t!#dt.

We shall prove that for any small enoughzs , this integral
equation has a unique solutionz(t) with zs(0)5zs .

3. Finite-time hyperbolicity

Equation~A7! can be rewritten as a functional equatio
of the form

z~ t !5F~z~ t !!, ~A8!

which shows that any solution contained inN(t) is a fixed
point of F. Using the norm

izi5sup
t>0

uz~ t !u, ~A9!

we shall viewF as a map on the function space

B5$f5~fs ,fu!:@0,̀ !→R2ufPC0@0,̀ !,

ifi<d, fs~ t0!5d* %,
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
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where 0,d* ,d are positive constants to be determin
later. Note thatB is a complete metric space in the nor
i • i . We want to show thatF is a contraction mapping on
B, which in turn will imply the existence of a unique solutio
to ~A8!. This solution will automatically be a solution of th
unmodified differential equation~A2! by the definition of the
spaceB.

First, we want to show thatF maps the spaceB into B.
From the integral equation~A7! and the estimates~A4! we
obtain

uFs~z~ t !!u<e2* t0

t l1(t) dtuzsu

1E
t0

t

e2*t
tl1(s) ds@ uPs~z~t!,t!u1uQs~z~t!,t!u

1uRs~z~t!,t!u# dt,
~A10!

uFu~z~ t !!u<E
t

`

e*t
tl2(s) ds@ uPu~z~t!,t!u1uQu~z~t!,t!u

1uRu~z~t!,t!u# dt,

which leads to

uFs~z~ t !!u<d* e2* t0

t l1(t) dt

1Fd
A2C

2a
1

A2b

a G E
t0

t

e2*t
tl1(s) ds uzu dt

1
A2

a E
t0

t

e2*t
tl1(s) ds B~t! dt,

~A11!

uFu~z~ t !!u<Fd
A2C

2a
1

A2b

a G E
t

t1
e*t

tl2(s) ds uzu dt

1
A2

a E
t

t1
e*t

tl2(s) ds B~t! dt.

Here the integrands on the right-hand side of the inequali
are to be replaced with zero fort values outside the interva
@ t0 ,t1#, since the integrands in~A10! vanish outside@ t0 ,t1#.
We now add the last two inequalities and take the suprem
both sides overt>0. ~On the right-hand side of the summe
inequality, this will simply amount to taking the maximum
over the compact interval@ t0 ,t1#.! Then, recalling the defi-
nition of the normi • i from ~A9!, we obtain that

iF~z~ t !!i<max
tPI

@ uFs~z~ t !!u1uFu~z~ t !!u#<d,

holds if

d* 1Fd
A2C

2a
1

A2b

a GF 1

l1 min
1

1

l2 min
Gd1

A2

a
Bw<d,

~A12!

is satisfied. This inequality will hold for appropriated* .0 if
we require

Fd
A2C

2a
1

A2b

a G 2d

lmin
1

A2

a
Bw,d. ~A13!
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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In summary, under condition~A13!, there exists smalld*
.0, such thatF maps the function spaceB into itself.

Next we want to find a condition forF to be a contrac-
tion mapping on the spaceB. This is the case if there exist
a positive constantq,1, such that for any two function
z(t),ẑ(t)PB, we haveiF(z(t))2F( ẑ(t))i<qiz(t)2 ẑ(t)i .
Estimates similar to~A11!–~A13! lead to

iF~z~ t !!2F~ ẑ~ t !!i

<F S d
A2C

2a
1

A2b

a D 2

lmin
1

A2

a
LwG iz~ t !2 ẑ~ t !i . ~A14!

This inequality shows thatF is a contraction mapping on th
spaceB if

S d
A2C

2a
1

A2b

a D 2

lmin
1

A2

a
Lw,1. ~A15!

We have therefore obtained that under conditions~A13! and
~A15!, the mapF is a contraction on the spaceB for small
enoughd* .0. As a result,F admits a unique fixed point fo
small enoughd* . This means that the set

N5$~N~ t !,t ! u tP@ t0 ,t1#%, ~A16!

is not empty@see~A6!#.

4. Lipschitz continuity

From the second equation of~A7!, we obtain that

uzu~ t !2 ẑu~ t !u<F S d
A2C

2a
1

A2b

a D 1

l2min
1

A2Lw

a G
3uz~ t !2 ẑ~ t !u

<F S d
A2C

2a
1

A2b

a D 1

l2min
1

A2Lw

a G
3~ uzu~ t !2 ẑu~ t !u1uzs~ t !2 ẑs~ t !u!,

which in turn gives

uzu~ t !2 ẑu~ t !u<
uzs~ t !2 ẑs~ t !u

F12S d
A2C

2a
1

A2b

a
D 1

l2min

1
A2Lw

a
G ,

~A17!
provided that

Fd
A2C

2a
1

A2b

a G 1

l2 min
1

A2Lw

a
,1.

But this last inequality will certainly hold whenever~A15!
holds. As a result,N(t) is a Lipschitz graph overzs by the
estimate~A17!.

5. Final set of conditions

To complete the proof, we need to find a set of con
tions under which~A13! and ~A15! both hold.

First, we assume thatCÞ0 and note that the inequalit
~A13! holds ford2,d,d1 , where
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
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d65
almin22A2b

2A2C
6A~almin22A2b!2

8C2
2

lminBw

C
.

For this condition to be meaningful, we must haved1.0
(d.0 must hold!, which holds if

BwC,
~almin22A2b!2

8lmin
, lmin.2A2

b

a
. ~A18!

At this point, we can choose anydP(d1 ,d2) in our esti-
mates. Computationally the simplest is the choice

d5D 5
def.almin22A2b

2A2C
. ~A19!

The second basic condition~A15! is equivalent to

Lw,
almin22A2b2A2Cd

A2lmin

.

With the d value we selected in~A19!, this last inequality
becomes

Lw,
almin22A2b2A2CD

A2lmin

5
almin22A2b

2A2lmin

. ~A20!

But ~A18! and~A20! are precisely the assumptions of The
rem 1.

Assume now thatC50. Then~A13! gives

Bw,d
almin22A2b

A2lmin

,

from which we obtain the condition

d.
A2lmin

almin22A2b
.

Therefore, any large enoughd can be selected for fixedBw .
We pick ad that satisfies

A2lmin

almin22A2b
,d5D 5

def. 2lmin

almin22A2b
. ~A21!

The second basic condition~A15! now gives

Lw,
almin22A2b

A2lmin

,

which certainly holds if

Lw,
almin22A2b

2A2lmin

. ~A22!

Again, ~A21! and ~A22! complete the proof of~i! of Theo-
rem 1 forC50.

Once conditions~A18! and ~A20! @or, for C50, ~A21!
and ~A22!# are satisfied for someBw ,Lw.0, then they are
automatically satisfied forBw5Lw50. This implies the ex-
istence of the material lineM(t) described in statement~i!
of the theorem. BothM(t) andN(t) are known to exist in a
d-ball around the trajectoryx̄(t). The upper bound ond in
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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our construction has beenD, therefore,N(t) andM(t) are
locally at leastD-close to each other, as stated in~ii ! of
Theorem 1.

APPENDIX B: PROOF OF THEOREM 2

The proof of Theorem 2 follows the approach taken
the proof of Theorem 1. We again start by changing coo
nates viay5x2 x̄(t), which yields the localized equation

ẏ5¹u~ x̄~ t !,t !y1m~ x̄~ t !1y,t !1O~ uyu2!.

This time, however, our second change of coordinatey
5T(t)z is defined through the matrix

T~ t !5F ¹Ftes

u¹Ftesu
,

¹Fteu

u¹Fteuu
G .

This change of coordinates maps the time-varying stable
unstable directions along the model trajectoryx̄(t) into the
two orthogonal directions (1,0)T and (0,1)T for all t. The
coordinate change gives the transformed system

ż5L~ t !z1R~z,t !1P~z,t !, ~B1!

with

L~ t !5T21~ t !@¹u~ x̄~ t !,t !T~ t !2Ṫ~ t !#

5diag ~2l1~ t !, l2~ t !!,

where the functionsl i(t) are yet to be determined. The d
agonal nature ofL(t) follows from the fact that the sub
bundles generated by¹Ftes and ¹Fteu are invariant under
the linearized flow¹Ft(x0). The functionsP andQ are again
of the form

P~z,t !5O~ iT21iuTzu2!, Q~z,t !5T21Ṫz,

and, as in the proof of Theorem 1, satisfy the estimates

uP~z,t !u<
A2C

2a
uzu2, uQ~z,t !u<

A2b

a
uzu,

uR~z,t !u<
A2

a
B~ t !, uR~z,t !2R~ z̄,t !u<

A2

a
L~ t !uz2 z̄u,

with

a5min
tPI

udetT~ t !u5min
tPI

udet@¹Ftes ,¹Fteu#u

u¹Ftesuu¹Fteuu
,

as defined in~18!.
To determine the diagonal elements ofL(t) in ~B1!, we

first note that a direct integration of the linear part of~B1!
gives

e* t0

t
2l1(t) dt5u¹Ftesu5A^es ,¹Ft* ¹Ftes&,

or, equivalently,
Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AI
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nd

l1~ t !52
1

2

d

dt
log^es ,¹Ft* ¹Ftes&

52
1

2

^es ,¹Ft* ~¹u~ x̄~ t !,t !* 1¹u~ x̄~ t !,t !!¹Ftes&

^es ,¹Ft* ¹Ftes&

52
^es ,¹Ft* S¹Ftes&

^es ,¹Ft* ¹Ftes&
, ~B2!

just as in ~16!. The expression forl2(t) @see ~16!# is ob-
tained from a similar calculation.

Under assumption~17!, Eq. ~B1! satisfies the same as
sumptions and estimates as Eq.~A2! in the proof of Theorem
1, except that we now haveb50 sinceQ[0. As a result, the
statement of the theorem follows from an argument ident
to that given in Appendix B.
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