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This paper examines whether hyperbolic Lagrangian structures—such as stable and unstable
manifolds—found in model velocity data represent reliable predictions for mixing in the true fluid
velocity field. The error between the model and the true velocity field may result from velocity
interpolation, extrapolation, measurement imprecisions, or any other deterministic source. We find
that even large velocity errors lead to reliable predictions on Lagrangian coherent structures, as long
as the errors remain small in a special time-weighted norm. More specifically, we show how model
predictions from the Okubo—Weiss criterion or from finite-time Lyapunov exponents can be
validated. We also estimate how close the true Lagrangian coherent structures are to those predicted
by models. ©2002 American Institute of Physic§DOI: 10.1063/1.1477449

I. INTRODUCTION of hyperbolic sets under small enough perturbations, offers

. , . , L __._no help in practical examples where velocity errors typically
Two-dimensional chaotic advection in time-periodic i, o tside the range of perturbation theory

fluid velocity fields is closely associated with the presence of This paper will provide general estimates for the accu-

invariant manifolds. For the period-one map, or Poincare racy of invariant manifold reconstruction from velocity mod-

. . . s, By a model velocity field, we simply mean a time-
folds of hyperbolic fixed points. Unstable manifolds act asdependent data set that one obtains after refining some

attracting material lines that create global folding patterns for . ) ) :
. ) . . . numerical or experimental velocity data. The difference be-
passive tracers; stable manifolds act as repelling materl.';'[ﬂ

lines that are responsible for stretching of tracer blobs. Ad-Veen the true and model velocity fields may result from this

. L refinement, as well as from additional deterministic errors in
vective mixing is therefore governed by stable and unstable

manifolds, or in other worddyyperbolic material lines data generation and data acquisition. .
Recent progress in nonlinear dynamics has extended thfe We show that as long as the model and the true vglocny

above picture to velocity fields with aperiodic or even turbu- leld are (_:Iose in a time-weighted no_ﬂhw lw. 2 hyperbqllc

lent time dependence. While no Poincanaps are available material line of the model data set signals a hyperbolic ma-

in this context, families of hyperbolic material lines continue 1@ l'n%'n the true ﬂOWHTO evaluate our cIoTe_ness Cr'ti”?]’
fo organize tracer mixing. These families are formed byPN€ Needs to estimate the attraction or repulsion rate of the

finite-time stable and unstable manifolds of speéiainpe- model material line, and the magnitude of the velocity error.
riodic) fluid trajectories® Several algorithms for the extrac- Ve give two different formulations, with different ways of

tion of such hyperbolic material lines have been prc)poseo(,estimating the attraction.and repulsion rates. Our first result,
with a notable emphasis on geophysical applicatfor?. The_:orem_ 1,_uses rgtes inferred from a Lagrangian Okubo-—
Although the extraction algorithms have performed well eSS C”t‘?”orﬁ while our second result, Theorem 2, uses
on interpolated two-dimensional velocity data, the effect offates obtained from a direct Lyapunov exponent calculdtion.
data processing and measurement errors on the result has The main lessons from our analysis are independent of
remained unclear. When performed with care, data proces$de invariant manifold extraction method, and can be sum-
ing, such as velocity interpolation or extrapolation, providesmarized as follows. First, even large modeling errors are ad-
a velocity field that is arguably close to the true field. Simi-missible, if they are localized in time. Large errors are also
larly, careful experimental techniques lead to a data set tha@dmissible if the hyperbolic material line found in the model
is close to the true velocity field. Closeness in the Euleriarttracts or repels strongly enough, or its time of existence is
sense, however, does not imply closeness in the Lagrangid@ng enough. These conclusions follow because the weight
sense. Indeed, local errors in the calculation of fluid trajecfunction in the norm - [|,, turns out to decay exponentially
tories will accumulate and lead to growing errors in particlein time (see Fig. 1
positions. Because all known methods for locating hyper- ~ Second, true and model trajectories may separate expo-
bolic material lines use particle positions, one has to contendentially, but true and model hyperbolic material lines will
with large errors or even spurious structures that are artifactsot. In other words, errors in individual particle paths will
of the processing techniques. Classic dynamical systems espreadalong hyperbolic material lines; errors transverse to
timates only reinforce one’s concerns: They indicate expohyperbolic material lines remain smafiee Fig. 2
nential separation between Lagrangian truth and its approxi- Third, maximizing curves of particle separation plots
mation. Another dynamical systems principle, the robustnesésuch as relative dispersion, finite-time or finite-size
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sible modeling error and on the accuracy of invariant mani-
folds for the Lagrangian Okubo—Weiss criterion. Section 1V
gives a similar result for manifolds obtained from finite-time
Lyapunov exponent calculations. Section V briefly explains
how our theorems can validate invariant manifold predic-
tions by other Lagrangian diagnostic tools, such as finite-size
Lyapunov exponents, relative or absolute dispersion, and en-
tropy. Section VI offers simple examples that demonstrate
the use of our criteria in applications. A summary and a list
of open problems conclude the paper in Sec. VII. We enclose
the proofs of our theorems in the Appendix.

0 . = II. NOTATION AND DEFINITIONS
=0 =10 =20

Consider a two-dimensional velocity field
FIG. 1. The graph of the weight functiow,(7) for the norm|| - |,

- fa i i i :
—ma)ﬁe[to,tﬂfd | wy(7) dt, in which the modeling error must be small for X=V(X,t)= u(x,t)+;u(x,t), (1
good predictions on hyperbolic material lines. The peak valye) is al-

ways atr=t. (a) w,(7) with t=4 for a typical hyperbolic material line of : ! :
the model velocity data over the time intervd,10]. (b) w,(7) with t wherev(x,t) denotes the true velocity figla is the model

=4 for a strongly hyperbolic material line€) w,(7) with t=8 for a ma- VeIOCitY field that qne intends _tO use for La_grangian_ data
terial line with a longer interval of hyperbolicity. analysis, angu(x,t) is the modeling error. In this papgr is
assumed to be a deterministic function that may arise from
] o _interpolatingv between gridpoints, from extrapolatingto
Lyapunov exponent plotsare hyperbolic material lines if nknown domains or boundary points, or from errors in ve-
and only if the Lagrangian rate of strain is nonzero alongiscity measurement. In all our arguments, the spatial variable
them. This result enables one to distinguish hyperbolic May is taken from a bounded domai, and the model field:
terial lines from lines of high shear in particle separationis gefined over a finite time interval
plots (see Example 3 of Sec. VI We assume that the model velocityis twice continu-

~ To establish the above conclusions, we use a finite-timg, g1y gifferentiable in space, and its second derivative obeys
invariant manifold approachAlong a candidate trajectory, the bound

we select a coordinate frame in which stretching and com-

pression separate at leading order. Working in this frame, we |V2u(x,t)|<C, 2)
construct repelling and attracting material lines as finite-time

hyperbolic invariant manifolds. In our arguments, the inter-for some nonnegative consta@t We further assume that
polation error does not need to be continuous in time, but iju(x,t) satisfies

has to be Lipschitz continuous in space. Accordingly, the

hyperbolic material lines we locate are Lipschitz in space  |u(x,t)|<B(t), |m(x,t)—uX)|<L(t)|x=X], (3
and continuous in time.

The organization of this paper is as follows. In Sec. Il wefor all x, xe D andt e Z. In other words, we assume thatis
fix notation. Section Ill contains our first result on the admis-bounded and Lipschitz ix with Lipschitz constant_(t).
Note that we allowu to jump in time at any spatial location
within D. Finally, we assume that a trajectoxyt) of the
model velocity fieldu(x,t) is known

d_— =
ﬁx(t)—u(x(t),t).

———————— To fix terminology, we recall that a material line of this
velocity field is a continuous time-dependent cupvé(t)
advected by the model flow. We cal1(t) a repelling ma-
terial line over a time interval if infinitesimal perturbations
Y approximate unstable off this line grow monotonically under the linearized fidw.
\  [Mmanifold We call M(t) an attracting material lineover | if it is a
repelling material line ovet in backward time.(For ex-
ample, the local stable manifold of a fixed pomof a Poin-
FIG. 2. Schematic relationship between modeled and true attracting materigflare map is a repelling material line over any finite time

lines (finite-time unstable manifoldsNote that, unlike hyperbolic material !nterval-) We refer.to attra(.:ting and repelling material lines
lines, modeled and true trajectories will generally separate exponentially. jointly as hyperbolic material lines

true unstable
manifold

Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 14, No. 6, June 2002 Lagrangian coherent structures 1853

Ill. LAGRANGIAN STRUCTURES FROM THE Note that a large spike in the error will still be small in terms
OKUBO-WEISS CRITERION of these measures, as long as its duration is short. Also note
_ that along a trajectory with largex,, the same Eulerian
The gradient ofu_along X(t) is given by the time- grror will produce smalleB,, andL,, values.
dependent matriX¥u(x(t),t). We assume that over some Finally, we define the distance
finite time intervall =[tq,t1] within Z, we have

_ C“)\min_Z\/Eﬂ if C>0
detVu(x(t),t)<0, (4) 2.2C
which implies thatVu(x(t),t) has real eigenvalues A= : C)
2)\min .
AL <0< A1), (5) _“hmn it c=p
’ ’ a)\min_z\/zﬁ

We recall that Okubt and Weiss" identify the spatial re- for use in our main theorem. Note that=0 arises for linear
i isfyi < h lic. Here h - o L . . .
gion satisfying deVu(x,t)<0 as hyperbolic. Here hyperbo model velocity fields. We include the linear case in our dis-

licity is meant in an instantaneous Eulerian sense; Lagrang- ~ . .
ian hvoerbolicit of;(t) would onlv follow if x_(t) were a cussion for completeness, and for use in our later examples.
yp y y Theorem 1 Suppose that along a trajectory(t) of the

flxe(\j/\/%ogeingj ;:g; e? tsria%ﬁ c\)/v(\a/ilggté/lﬂaeslgén' Under wh atmodel velocity fieldl, condition (4) is satisfied. Assume fur-

" — : _ ther that
conditions doesx(t), a model trajectory staying in the

Okubo—Weiss hyperbolic region, indicate the existence of \/_,8 (a)\mm—z\/iﬁ)z
nearby hyperbolic material lines in the true flow? We start by Nmin>2 V2 a’ BuC< 8\ min ' (10
defining the quantities
and
N min= Tlir)\k(t)a k=12, Nmin=MiN(\1 minsA2 min), a)\min_z\/zﬁ
(6) L,y <—. (11
2\/E)\min

which measure the minimum of the norm of the eigenvaluesyy, o,
M(1). We also define the eigenvectagt) ande,(t) corre- o
sponding to—\4(t) and \,(t), and assume that they are (i) the model trajectori(t) is contained in a hyperbolic

normalized to/g(t)|=1, and are chosen such thg(t) de- material line M(t) over the time interval I;
pends smoothly oh Using the matrix of eigenvectois(t) (i)  the true velocity field/(x,t) admits a hyperbolic ma-
=[e(t),e,(t)], we define the two quantities terial line AV(t) which is at leastA-close to M(t)
: near the trajectoryx(t).
a=minldetT(v)], B=maqT(O), U jector(t)
tel tel

We will prove Theorem 1 in Appendix A.
with [|T|| = Vi Tﬁ denoting the norm of the matrik. Note
that o is a measure of the minimal angle between the WG\, | AGRANGIAN STRUCTURES FROM FINITE-TIME
eigenvectors, whilgg measures the maximal rate at which | yapyNOV EXPONENTS
the eigenvectors change.

As it turns out below, it is not the actual error, but rather ~ We now move on to discuss the relevance of finite-time
its weighted norm along the model trajectott) that affects ~ Lyapunov exponent calculations on the model field for the

the existence of Lagrangian structures in the true data selfue velocity fieldv. Let F'(xo) denote the current position of
The weight function we obtain in our mathematical argu-the fluid trajectory that started from the poiy at timet,.

ments is We again fix a particular trajectorg(t)=F'(x,) of the
. . model velocity fieldu over the tir_ne interval =[tq,t4].
e [rOds if  Te[to,t) Infinitesimal perturbations ta(t) satisfy the equation
Wi(7)= (8

E=Vux(t), 1) (12)

which admits the solution

e~ Ja®ds if  relt,tq]

where the time parametdris taken from the interval .
=[to,t;]. For a typical shape ofi,(7), we refer the reader &1)=VF(xo)&-

back to Fig. 1. Usingv(7), we define two measures of the Assuming thatv Fi(x,) is known for anyt I, we define the

modeling error time-dependent scalar field
t _ t * vt
szmaxf "B(r)wi(r) dr, 71(%0) = Nmad [V F'(X0) 1* VF'(x0)), (13
tel Yo the maximal eigenvalue of the Cauchy—Green strain tensor
. field [VF'(xo)]* VF'(xo). (Here* refers to matrix transpo-
LW:maXJ 1L(T)Wt(7) dr. sition and\ ,(A) denotes the maximal eigenvalue of a ma-
tel Jto trix A.) Note thato(Xy) gives the maximal stretch that
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repelling material line
(finite-time stable manifold)

contours of the maximal
finite-time Lyapunov exponent

FIG. 3. The choice of the unit vectag(xp).

solutions of (12) will experience over the time interval
[to.t]. As argued by Hallef,hyperbolic material lines at
=t, tend to be local maximizing curves of(xy). To avoid
deriving extra conditions that exclude special degenerate
cases, we shall simply assert that finite-time hyperbolic ma- 3
terial lines arg Iocall maX|m_|zmg Cﬁ’rves of thﬁ(XO)’ 1.e., FIG. 4. The contours ofr(Xy), and theey(x,) vector field—as defined in
the value ofo is nonincreasing in directions normal to these (14—for a two-dimensional barotropic turbulence simulatifee Haller
material lines. We require “nonincreasing” instead of “de- and Yuan(Ref. 3 for details]
creasing” because no finite-time hyperbolic material line can
be locally uniqué.

To illuminate the meaning o further, we recall that

39 4 2 4.2 43 4.4 45 4.6 47

We now repeat the above construction in backward time
for a unit vectore,, a candidate for a tangent to thet,
slice of an attracting material line that contai(s$). Again,

1
DLE(X0) = 57— l0g a1(xo), a simple choice fog, is

2(t—tg)

is just the maximaldirect finite-time Lyapunov exponent (V':tl)flv‘fto(x(tl))l
(DLE) associated with the trajectom(t). In this context, &%) = [(VE1) "W o, (x(t))]
“direct” means the exponent is computed directly from its . 0
definition, i.e., from differentiating fluid trajectories with re- whereo (X(t1)) is based at positions at tintg¢ and is com-
spect to their initial positions. Contour plots of DiE)  puted in backward time up to timtg. In the formula above,
usually reve_al_more local maximizers of_stretchlng than thae tangent vectoW o, (x(t,))* for the level curve of
of a¢(Xg); this is why the DLE field is typically better suited — — 0 L
for Lagrangian data analysis than thgx,) field. UtO(X(tl)) throughx(t,) is mapped back to the initial con-

We now use the DLE field to infer the location of hyper- figuration att=t, by the inverse of the linearized flow map.
bolic material lines in the flow. We start by selecting a unitIn other wordsg,(xo), as defined above, is the inverse im-
vectore, based at the initial positiox, . This unit vector will ~ age of an approximate tangent vector to the candidate attract-
be a candidate for a tangent vector to thet, section of a ing material line at=t, . Again, other choices fag,(xo) are
repelling material line containini(t). As follows from Ref. possible. For l_nstance, if velocity data is also available
7, if t,—tg is large enough then a good choice &iis given over the time intervalt_;,to] .for somet_;<to, thenl a
by choice analogous to(14) gives e,(Xo)=Vo_ (Xo)"/

Vo, (xo)* .

Vcrtl(xo)L We now define quantities whose role turns out to be
m, (14 similar to that of the quantities featured in the previous sec-

1170 tion. To emphasize this analogy, we use the same notation for
these quantities, even though their actual definition will be
different in our current context.

For any fixed initial positiorx,, we introduce the nor-
malized Lagrangian strain rates

(15

&(Xo) =

i.e., by a unit vector tangent to the contour curveogf(xo)
passing througl,. (Herea" denotes a vector normal to the
vectora with |a"|=1al.) Shown in Fig. 3, this choice fag,

is motivated by the observation that(x,) admits a ridge
along thet=t, slice of the locally strongest repelling mate- (£ = (e, VF'* SVF'e;)

rial line. (H)=- (e, VF*VFle) '

If the point x, is contained in such a ridge, ' (16)
Vo (Xo) |Vo(x)| will produce a unit vector that is ap- (&, VF*SVF'e))
proximately tangent to the ridgesee Fig. 4 for a numerical 2= (e,,VF*VFle,) '

example. As Fig. 4 shows, formuld14) indeed produces _ _ _
correctly oriented tangent vectors for the strongest repellingvhere S refers toS(x(t),t) =2 Vu(x(t),t) + Vu(x(t),)*1,
material lines. For weaker lines, more refined choices,of the rate-of-strain tensor evaluated along the trajectéryat
may work better. time t. We again assume that
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=N (1) <O<N (1), 17
holds over the time intervdl=[t,,t;], and define

Nmin=MiN N (1), K=1,2,  Npyin=miN(A 1 min, A 2min) -
tel

We stress thatl7) requires the two Lagrangian straingt)
to keep their signs all over the intervial
Next we define

defVF'e,,VF!
a:minl { : & teu]l, 19

a constant that measures the minimal separation between P

vected counterparts of the initial vectasande,. We also

re-introduce the following measures of modeling error from

the previous section:
ty ty
szmaxj B(r)wy(7) dT, szmaxf L(m)wi(7) dr.
tel 1o tel 1o

Finally, we redefine the distande form the previous section
as

)\ .
:ﬁg it Cc>0
A= . (19
2
2 i c=o0
o

Lagrangian coherent structures 1855

The sufficiency of conditiori22) in the above statement
follows from Theorem 2 after setting,,=L,,=0.

Two remarks are in order. First, an inspection of the
proof of Theorem 2 shows that & is not just an approxi-
mate but anexacttangent vector to the candidate material
line M(t), then conditiong22) become necessary fow1(t)
to be a repelling material lind.This is because the linear
instability of M(t) necessarily implieg22), as seen from
(B2).]

Second, the proof of Theorem 2 does not depend on the
particular choice of the vectoes ande,. As we noted ear-
lier, (14) and(15) are plausible choices, but other candidates
an also be used. As long as these candidates s&2®fythe
repelling nature ofM(t) follows.

V. IMPLICATIONS FOR OTHER LAGRANGIAN
DIAGNOSTIC TOOLS

Theorem 3 can validate predictions by any Lagrangian
method for locating hyperbolic coherent structures from flow
data. Specifically, maximum curves of finite-time Lyapunov
exponents?~1’ finite-size Lyapunov exponent$, relative
dispersiorf,1%181%r entropy!® as well as lines of disconti-
nuity of absolute dispersion or patchingssll indicate
finite-time hyperbolic material lines as long as the Lagrang-
ian strain conditiong22) hold along them. Verifying these
strain conditions requires the identification of the vectgs
andey, and the estimation of the modeling error.

We are now ready to state a result analogous toy|, EXAMPLES

Theorem 1.

Theorem 2 Suppose that along a trajectoﬁt) of the
model velocity fieldu, condition (17) is satisfied. Assume
further that

2

AN\ pmi
B,C< 8"“” (20)
and
o
Ly <——x. (22)
242
Then

(i) the model trajectori(t) is contained in a hyperbolic
material line M(t) over the time interval;l

(i)  the true velocity field/(x,t) admits a hyperbolic ma-
terial line AM(t) at leastA-close toM(t).

In this section, we give examples where our theorems
can be evaluated analytically. The purpose of these examples
is to give the reader a feel for the qualitative meaning of the
results; more complex numerical velocity models will be
treated elsewhere.

Example 1 The simplest example for the application of
Theorem 1 is given by the velocity field

V(X 1) =A(t) X+ m(X,t),
where the coefficient matriA(t) is of the form
—Nt) O
0 (1)

with some continuous function(t)>0. We assume the ve-
locity error u(X,t) to be Lipschitz inx with Lipschitz con-
stantL(t) for any fixedte| [see(3)]. We also assume that
|u(x,t)|<B(t) for tel.

Sinceu(x,t) is linear, we haveC=0 [see(2)]. Further-

A(t)=(

We prove this theorem in Appendix B. In the special more, the eigenvectors @f(t) are constant and orthogonal,

case of zero modeling erroB(,=L,,=0), statementi) of
the theorem gives\ =0—which means that a hyperbolic
material line passes through the poigt This observation
implies the following result.

Theorem 3 A local extremum curve | of the scalar field
o, corresponds to a repelling material lingV1(t) (with
M(tg)=1) if

(e, VF*SVF'e)<0, (e, VF*SVF'e)>0 (22

hold for all tel along .

thus (7) gives a=1, B=0. We also see that for any finite
time intervall,

Nmin=min \(t).
tel

Then Theorem 1 guarantees the existence of a repelling ma-
terial line A(t) nearx=0, provided that

ty 1
max f L(nwi(7) dr<—.
teltg,t1] 7 to \/E
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Moreover, by Theorem 1, the distance/utt) from the ori- B(%)
gin x=0 is less than A
A=2.

Notice that the magnitude of the modeling error is not
constrained by the above results: Only the Lipschitz constant
of the error must obey a bound. The reason for only a single -
condition is the linearity ofi, which cause€ to vanish.

Since the model velocity field can be solved explicitly 0 g
by exponentiating the matriA(t), applying Theorem 2 to 0 3 10
the above example will lead to the same result. FIG. 5. Spiky velocity error over the time interve&=[0,10]. The magni-

Example 2 To illustrate the application of Theorem 2, tude of the error increases linearly from zero to one over the interval
we consider the velocity field [4.95,5], and decreases back to zero linearly over the intdiyA.05.

V(X,t) =A(t)x+f(X,t) + pm(Xx,t), (23
with a=1.

sin 2wt w+cos 2wt 0 These observations give the following form of conditi@d)
A(t)= _ , f(x,1)= . in thi :
® —w+cosZwt  —sin 2wt ) () ix3 in this example
ty 1
Again, we assume that(x,t) is Lipschitz inx over the box BW=maxJ B(nwi(7) dr< 70, (26)
tel Jlo 0
Us ={xeR?||x{=<6,!, : -
% Ixe ] < 5o} imposing the upper bound
with Lipschitz constant (t). We also requirgu(x,t) to be 1
bounded in norm by(t). Note that withinU 5y WE have the 8p= 168 (27
estimate "
) on the size of théJ ;_ball in our analysis. At the same time,
[V2u(x,t)|<C=26,. (24) 0

an inspection of the proof of Theorem 1 shows that hyper-
For |w|>1, the eigenvalues ofVu(0,t)=A(t) are bolic material lines can be constructed in thg box around

+iJw?—1. This eigenvalue configuration does not satisfythe origin, withA defined in(19). This observation implies

the basic assumptions of Sec. Il tke:0 stagnation pointis that we must have\ = 1/(4y28,) < 8,, or equivalently,d,

not Okubo—Weiss hyperbolic. Following the approach of>1/(23/2), which together wit{27) gives the condition

Sec. IV instead, one finds th&t'(0) can be calculated ex- a5
plicitly: B < ~0.1487. (28)
coswt —sinwt\ /et 0 » .
VF(0)=| . . (25) As for condition(21) of Theorem 1, we obtain
sinot  coswt/\ 0 ¢

t 1
This formula shows that the origin is finite-time hyperbolic LW:maxf lL(r)wt(q-) dr< ——=~0.3536. (29
over any time interval. For u=0, classic invariant manifold tel Jto 2\/E

theorems guarantee that=0 admits stable and unstable \yg conclude that if28) and(29) are satisfied, then Theorem

manifold in the extended phase space. These fma':‘ifOIds 8%gives the existence of attracting and repelling material lines
tangent to the stable and unstable bundlesy®t(0); the \\ithin the U, ball for the true velocity field23) with
asymptotic decay rates of solutions in them are givereby 4

2

in forward and backward time, respectively. 1

Based on the above, the scalar fieldx,) will admit a AT e, “2yz 04204 (30
local maximizing curve that contains tlxe= 0 solution of the
model velocity field. This curve is the DLE approximation of ’ ) X ,
thet=t, slice of the local stable manifold of the origin. For —[0,10], and consider the spatially uniform velocity error
large enough, the maximizing curve becomes close enough"(t):(o'MZ(t)) with
to Fhe a'ctual stable manifold, and hepce 'Fhe vee0) 0 if 0=t=4.95
defined in(14) becomes a good approximation for the tan- 3(t—4.95 if 4.95<t<5

As a simple example, let us fix the time intervial

gent of the manifold at the origin. In that cagép) gives po(t)= .
A1(t)=1. Similarly, a backward-time DLE calculation yields —3(t—5.09 if 5<t<5.05
\,(t)=1, which then gives 0 if 5.05<t<10
Amin= 1. The magnitude of u(t)|=B(t) is shown in Fig. 5. We find

Furthermore, as seen frof@5), the two vectorsey(0) and the time-weighted measures of the velocity error to be

e,(0) are orthogonal, leading to the value[see(18)] B,=0.1476, L,=0.

Downloaded 18 Nov 2002 to 18.80.4.201. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 14, No. 6, June 2002 Lagrangian coherent structures 1857

(b)

FIG. 6. The DLE(x,) field for Example 2, witht;=0 andt=10. The circle indicates the location of the bl . (a) Model velocity field;(b) true velocity

field.

The first of these measures is obtained from numerical inte- Pt 4 2
. . . . , 2u u (t to) Oy
gration, while the second one is zero because the modeling o= — TS
error is independent of. These values satisfy the inequali- 200+ (U7 (1=1g)"+2
i i ial li 33
ties (23)_and_(29), thus a hyperbolic mat_erla_l lin&/t) near e[ (U")2+u'u" ]~ 2(a!)? (33
the origin will survive in the true velocity field. We obtain ol = ]
from Theorem 1 and30) that the distance aof/{t) from the 200+ (U2 +2

origin does not exceed =0.4204. , . .
. Assume now thati’ is positive and locally maximal
We show the results of a DLE calculation for the model _ 7, i.e P y ato

and for the true velocity field in Fig. 6. Since our calculations
have remained independent of the parametewe selected u'(7)>0, u"()=0, u”(7)<0.
=0 in our simulation to minimize numerical errors. The - : TSR
figure shows that while the global stable manifold—an at-We ISBhOW the corresponding velocity profile in Fig. 7.
) S o y (33), we have
tracting material line—of the model velocity field deforms
noticeably, it does survive the effect of the spiky error term, 20(p)u’ (n)u"(7n)
and remains close to its original position within the Ha) . oi(n)=0, o{(n)= —
Example 3 This example will show how Theorem 3 20¢(n)+(U'(n)"+2
distinguishes spurious maximizing curves of Lyapunovwhich shows that thgy,= 7 line is a local maximizing curve
exponents—arising from maximal shear—from hyperbolicfor o(y,) and hence for the direct Lyapunov exponent field
material lines. Let us consider a parallel shear flow of theDLE;(xy). Yet, as(31) shows, no hyperbolic material lines

form (stable or unstable manifoldexist in this flow. Therefore, as
we noted earlier, local maximizing curves of Lyapunov ex-
v(x,t):<u(y) , X:(X). ponent plots do not imply local hyperbolicity in the flow;
0 y they may also be indicators of high shear.

The trajectories satisfy

X(t)=Xp+u(yo) (t—tg), y(t)=Yo, (31

y
from which we obtain |
X

1 ! -
VFt(XO)Z( u’(yo) (t to)>, (32

0 ! y=n

with prime denoting differentiation with respect yg. This
formula shows that the Cauchy—Green strainonly de-
pends on they, coordinate of an initial conditionx,
=(Xg,Yo)- An implicit differentiation of the characteristic
equation of the matrixVF'(xo) 1* VF'(x) further yields FIG. 7. Velocity profile for Example 3.
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We now show how Theorem 3 reveals that the aboveAPPENDIX A: PROOF OF THEOREM 1
maximizing curve of the Lyapunov exponent field is a non-4 Setup
hyperbolic material line. Fromil4), (32), and from the defi- '

nition of the rate of strain we obtain As in Ref. 2_,we start by introducing the change of co-
1 1/0 u ordinatesy=x—x(t), which puts(1) in the form
es(xo):(o)' SZE(u' o)’ y=Vu(x(t),0)y+ pm(x(t) +y,H) + O(ly|?), (A1)
1/ 0 u’ where theO(|y|?) terms also depend dnWe recall that the
== SVFI:E(U’ o) ) mat@< T(t) contains the normalized real eigenvectors of
. Vu(x(t),t) that exist under assumptiof). We pass to
which leads to eigenbasis along(t) by lettingy=T(t)z, which yields the
(e, VF* SVF'e))=0 transformed system
or \4(t)=0. Therefore, even thougyy= 7 is a local maxi- z=A(t)z+R(zt) +P(z,t)— Q(z1), (A2)

mizer of the finite-time Lyapunov exponent field DI(K,), .
o . - : with

it is a nonhyperbolic material line by our first remark after

Theorem 3. A(t)y=diag (—Nq(1),\x(1)),

VII. CONCLUSIONS R(z)=T () m(x(1) + T(t)z,)

In this paper we have examined the relevance of Laand
grangian coherent structures—finite-time stable and unstable _ 1 2 -1+
manifolds extracted from model velocity data—for the true Pz=0(TIT2,  Qz=T""Tz
flow. We have found that Lagrangian coherent structures arérom the definitions otr, 8, C, andB(t), we obtain
surprisingly robust: even large velocity errors will preserve

- oo y2C V28
them as long as those errors are small in a special timgp(z t)|<——|z2, |Q(zt)|<—|z.
weighted norm. The weight function in this norm turns out to 2a a
decay exponentially in time, allowing for temporally local-
: e . . 2 - V2 -
ized spikes in both the error and its gradient. [R(z,t)|<s—B(1), |R(z,t)—R(z,t)|<—L(t)|z—2.

In more mathematical terms, Theorems 1 and 2 give @ @

conditions under which the modeling error can be viewed as .
a small perturbation to the flow map, the map that takeg- Integral equations

initial particle positions at=t to later positions at=t;. In As in Ref. 2, we fix two small constants,d>0 and

this sense, this paper provides a quantitative relation betWﬁ‘Grﬂodify (A2) in aC” fashion so that the modified vector field
deterministic Eulerian errors and their effect on the finite-

time Lagrangian flow. z=A(1)z+R(z,1)+P(z,1) - Q(z), (A3)
We summarized our main qualitative results in the INtro-pacomes Lipschitz for alte R? andte R, coincides with

duction. We have also shown the quantitative use of our criEq. (A2) for |z|<6 and te[ty+d,t;—d], and obeys the
teria through simple examples in Sec. VI. An application of .¢timates ot Tl

these criteria to surface velocity measurements in Monterey
Bay will appear elsewhere. A (D)= =Nmin<O<Aomin=<A(1),

A much-needed extension of our analysis would incor-_ _
porate stochastic terms in the velocity error. PreliminaryA1(t)=A2(1)=0, teR,
work in this direction indicates a similar robustness of La- J2c \/EB
grangian coherent structures for stochastic noise, althougib(zt)|<s——|7, |Q(zt)|<-—|z,
under somewhat different conditions. 2a «

A further extension of interest will be the treatment of > B L 2 o
three-dimensional3D) flows. Such an extension appears |R(z,t)|<—B(t), |R(zt)—R(zt)|<—L(t)|z—2,
plausible based on the available 3D extensions for the La- @ «
g;a;)ré%|:2toa‘lr;(§)rci{[hg-e|ss criterion and for the direct Lyapunovlg(z,t):Q(z,t)Eo and B(t)=L(1)=0

for te[ty,t;] or |z/>24. (A4)
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ag(ndr t hads where 0<§* <4 are positive constants to be determined
Z(t)=e 't Zs('[s)“Lft e M later. Note thatB is a complete metric space in the norm
s | - |l. We want to show thafF is a contraction mapping on
X[Pg(z(7),7)+Qq(z(7),7) +Rs(2z(7),7)]dT, B, which in turn will imply the existence of a unique solution
. to (A8). This solution will automatically be a solution of the
Zu(t):ef{ukz(r)dfzu(tu)Jr J' e/ Ma(9)ds unmt;tljsified differential equatiofA2) by the definition of the
ty spaceB.

First, we want to show that maps the spacB into B.
X . : ) .
[Pu(z(7),7)+Qu(z(7),7) +Ru(z(7),7)]d7 From the integral equatio7) and the estimate€A4) we
(A5)  obtain
We want to construct an invariant saf that contains e dr
bounded solutions to the above integral equation. If nontFs(Z(1)|<e /M @z
empty, A/ will be an exceptional invariant set because most

t
solutions neaz= 0 grow due to the positive exponent in the +J’ e~ IO I|p(2(7),7)|+]Qu(2(7),7)]
second equation dfA5). Once a solution leaves theSzball to
outside which the velocity field is linear, it will further grow +|Rs(z(7),7)|]1d7,
without bound. As we shall see, the subsef\ofalling in the (A10)

intervalt e [ty+d,t; —d] serves as a finite-time stable set for

a trajectory that is close to the original squtiE(t) of the
model velocity field.

| Fu(z(t)]< ft "2 9|P(2(7), 7)| +|Qu(2(7), 7]

For any fixed initial timet,, we first defineM(t,) as +[Ry(z(7),n] dr,
Nto) ={zo|sUR=y | 2(t;20)| <20}, (A6)  which leads to
wherez(ty;z,) = z,. Note thatN(ty) is a positively invariant | Fu(z(t))| < ye—fioxl(f) dr
family of sets indexed by,. Furthermore, for any fixed
e R and for any potential solution(t) e M(t), we have +[5\/2§;: . \/33} fte_f:)\l(s) ——
lim |22 dz,(t,)|<K lim e/i}2) d7=0. fo
t,—® t,,—x
i . .. ' . . +\/_§ te*ft,M(S) dSB(7) dr
As a result, taking the limit,—cc in (A5), settingt;=t, and a Ji, '
z4(ts) =z, we obtain the following integral equation for so- (A11)

lutions in{(M1),t) | te R}: J2c N
t 2a
z(H)=e T4z 4 f e IM(9)ds

t
i + E Ileflv)‘z(s) dsB(7) dr.
X[Pg(2(7),7)+Qg(2(7),7)+ Ry(2(7),7)]dT, a Jt

(A7)

|fu(2(t))|${5 @}Jtleﬁ)\z(s) ds|z| dr
a t

2= [ &9 TPy (at7),1)+Qy(2(7). 7

are to be replaced with zero fowvalues outside the interval
[to.t1], since the integrands ifA10) vanish outsidétg,t;].

+Ru(z(7),7)]dT. We now add the last two inequalities and take the suprema of
We shall prove that for any small enough, this integral  both sides ovet=0. (On the right-hand side of the summed
equation has a unique solutiaft) with zy(0)=z. inequality, this will simply amount to taking the maximum
over the compact intervdl,,t;].) Then, recalling the defi-

3. Finite-time hyperbolicity nition of the norm| - || from (A9), we obtain that

Equation(A7) can be rewritten as a functional equation || F(z(t))|<max| Fg(z(t))|+| Fu(z(t)|]< 4,
of the form tel

z(t)=F(z(1)), (A8)  holds if
which shows that any solution containedAf{(t) is a fixed [ J2c 2] 1 2

i i &+ 6 + + 0+ —B,<6,

point of 7. Using the norm 20 a o Mo o oW

Iz =sudz(t)], (A9) (A12)

=0 is satisfied. This inequality will hold for appropria® >0 if

we shall viewF as a map on the function space we require

B={¢=(s,$u):[0%)—R?| e C[0»), [5J§c+ V2| 26 N2 s L3

lpl<o,  ¢sto)=5*}, 2a a [Npn a7
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In summary, under conditiofA13), there exists smalb* 2
Nmin— 2+/2 Nmin— 2+/2 A minB
>0, such thatF maps the function spad# into itself. 5. = O\ min— 2128 + \/(a min 2‘/—'8) _ ZminTw
Next we want to find a condition faf to be a contrac- 2.\2C 8C C

tion mapping on the spad& This is the case if there exists kg, this condition to be meaningful, we must hade>0
a positive constang<<1, such that for any two functions (5>0 must hold, which holds if

z(t),z(t) € B, we have| F(z(t)) - F(z(t))[<az(t) - z(t)]. 5
Estimates similar tdA11)—(A13) lead to (a\min—2v28)

B,C<
" 8)\min

. Amin>242 §. (A18)
|7 (z(t)) = Fz(r)|

PR

At this point, we can choose anye (6, ,6_) in our esti-

_ mates. Computationally the simplest is the choice

lz(t)—z(t)[|. (AL4)

2a a | Ny
" def'a’)\min_ 2\/518
This inequality shows thaf is a contraction mapping on the o=A= W (A19)
spaceB if
5\/§C X \/5,8 5 X ‘/EL _ s The second basic conditidA15) is equivalent to
20 a Ny o VT (AL5) . <a)\min—2\/§,8— J2cs
w .

We have therefore obtained that under conditioh&3) and \/Ekmin

(Al15), the mapF is a contraction on the spa&for small

) ) ) ) With the § value we selected ifA19), this last inequality
enoughs* >0. As a result,F admits a unique fixed point for

. becomes
small enoughs*. This means that the set
Amin—2V2B8—+2CA Nmin— 22
N={(MD.0)] telto i) (a1e) o hmn ﬁfﬁ V2CA @ — 28 a0
is not empty[see(A6)]. min min
But (A18) and(A20) are precisely the assumptions of Theo-
4. Lipschitz continuity rem 1.

. . Assume now tha€=0. Then(Al iv
From the second equation A7), we obtain that ssume now thaC=0 en(A13) gives

) [ 6@0 28, 1 2L, BW<5M
— s 1
2t =zOl= | 05+ = =+ | 2\ min
% |z(t)—2(t)| from which we obtain the condition
<’ V2c  \2p) 1 V2L, 5>M_
\_ 5 2(1 + o )\Zmin+ o ] a)\min_z\/iﬁ

Therefore, any large enoughcan be selected for fixed,, .

X (|zy(t) _EU(m lzs(t) _ES(t)D’ We pick aé that satisfies

which in turn gives

\/Ekmin def. 2N min
- — M os=A=—T"_ (A21)
|Zu(t)_2u(t)|$ |ZS(t) ZS(t)| , a)\min_Z\/ﬁ a)\min_zm
{1_( 5\/5(3 . \/5,3) 1 . VL, The second basic conditigi15) now gives
e @ [hamn & A= 228
(A17) Lw< NN
provided that min
which certainly holds if
2¢ V2Bl 1\, Y
o + + 1.
2a a | N min @ a7\min_2\/§,3
L, <—_— 777, (A22)
But this last inequality will certainly hold whenevéA15) 2\/E)\min
hoIQs. As a resultN(t) is a Lipschitz graph overzg by the Again, (A21) and (A22) complete the proof ofi) of Theo-
estimate(A17). rem 1 forC=0.
_ N Once conditiongA18) and (A20) [or, for C=0, (A21)
5. Final set of conditions and (A22)] are satisfied for somB,,,L,,>0, then they are
To complete the proof, we need to find a set of condi-automatically satisfied foB,,=L,,=0. This implies the ex-
tions under whichfA13) and (A15) both hold. istence of the material ling1(t) described in statemeii)
First, we assume thal+0 and note that the inequality Of the theorem. Both\(t) andA{t) are known to exist in a
(A13) holds for§_<6< 4, , where S-ball around the trajectory(t). The upper bound o@ in
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our construction has beeh, therefore MV(t) and M(t) are
locally at leastA-close to each other, as stated (i) of
Theorem 1.

APPENDIX B: PROOF OF THEOREM 2

The proof of Theorem 2 follows the approach taken in
the proof of Theorem 1. We again start by changing coordi-

nates viay=x—;(t), which vyields the localized equation

y=Vu(x(t),t)y+ p(x(t) +y,t) + O(]y|?).

This time, however, our second change of coordinates
=T(t)z is defined through the matrix

VF'e, VFlg,
|VF'e) ' [VFe

T(H)=

This change of coordinates maps the time-varying stable an

unstable directions along the model trajectol_(y) into the
two orthogonal directions (1,0)and (0,1Y for all t. The
coordinate change gives the transformed system

z=A()z+R(zt) +P(z1),
with

(B1)

A =T X[ Vux(t),HT(H)—T(1)]

=diag (—Ay(t), Nx(1)),

where the functiong,;(t) are yet to be determined. The di-
agonal nature ofA(t) follows from the fact that the sub-
bundles generated byF'e, and VF'g, are invariant under
the linearized floww F'(x,). The functions® andQ are again
of the form

Pz)=0(IT [Tz, Q(ztH=T Tz
and, as in the proof of Theorem 1, satisfy the estimates

NAle

V2B
|P(Z,t)|$g|2|2, |Q(zt)|= T|Z|’

2 — 2 —
IR(z,t)|= %sm, IR(z,t) —R(z,t)|< %_Lmlz—zl,
with

de{VF'e,,VF!
a=min|detT(t)|=min det ; = : ]l
tel tel |VFeS||VFeu|
as defined in18).
To determine the diagonal elements/Aft) in (B1), we
first note that a direct integration of the linear part(BfL)
gives

efio—)\l(q') dr_ |VFteS| — /<es ,VFt* VFteS),

or, equivalently,

Lagrangian coherent structures 1861

A :_EE| VF*VF
1) == 5 Gloxes, &)

1 (e, VE™* (Vu(x(t),t)* + Vu(x(t),1)) VF'ey)
2 (e, VF*VF'e)
(&, VF*SVF'ey)

o (e, VF* VF'e,) '

just as in(16). The expression foh,(t) [see(16)] is ob-
tained from a similar calculation.

Under assumptioril?), Eq. (B1) satisfies the same as-
sumptions and estimates as E42) in the proof of Theorem
1, except that we now haye=0 sinceQ=0. As a result, the
statement of the theorem follows from an argument identical
to that given in Appendix B.
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