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We review and test twelve different approaches to the detection of finite-time coherent material struc-

tures in two-dimensional, temporally aperiodic flows. We consider both mathematical methods and

diagnostic scalar fields, comparing their performance on three benchmark examples: the quasiperiodi-

cally forced Bickley jet, a two-dimensional turbulence simulation, and an observational wind velocity

field from Jupiter’s atmosphere. A close inspection of the results reveals that the various methods

often produce very different predictions for coherent structures, once they are evaluated beyond heu-

ristic visual assessment. As we find by passive advection of the coherent set candidates, false posi-

tives and negatives can be produced even by some of the mathematically justified methods due to the

ineffectiveness of their underlying coherence principles in certain flow configurations. We summarize

the inferred strengths and weaknesses of each method, and make general recommendations for mini-

mal self-consistency requirements that any Lagrangian coherence detection technique should satisfy.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4982720]

Coherent Lagrangian (material) structures are ubiqui-

tous in unsteady fluid flows, often observable indirectly

from tracer patterns they create, for example, in the

atmosphere and the ocean. Despite these observations, a

direct identification of these structures from the flow

velocity field (without reliance on seeding passive tracers)

has remained a challenge. Several heuristic and mathe-

matical detection methods have been developed over the

years, each promising to extract materially coherent

domains from arbitrary unsteady velocity fields over a

finite time interval of interest. Here, we review a number

of these methods and compare their performance system-

atically on three benchmark velocity data sets. Based on

this comparison, we discuss the strengths and weaknesses

of each method, and recommend minimal self-

consistency requirements that Lagrangian coherence

detection tools should satisfy.

I. INTRODUCTION

Coherent structures, such as eddies, jet streams, and

fronts, are ubiquitous in fluid dynamics. They tend to enhance

or inhibit material transport between distinct flow regions.

Their Lagrangian (trajectory-based) analysis has improved

our understanding of a number of fluid mechanics problems,

including ocean mixing,1–4 the swimming of marine ani-

mals,5–7 and fluid-structure interactions.8–10

A number of different approaches to Lagrangian structure

detection have been proposed over the past two decades (see

Refs. 11–16 for reviews). The volume and variety of these

methods have made it difficult for the practitioner to choose

the appropriate tool that fits their needs best. In addition,

purely heuristic tools with unclear assumptions and mathemat-

ical methods supported by theorems have rarely been con-

trasted, creating a general feeling that all Lagrangian methods

give pretty much the same results. All this creates a need for

taking stock in the area of material structure detection by com-

paring the methods on challenging benchmark problems. The

purpose of this paper is to address this need by surveying a

large number of Lagrangian coherent structure (LCS) detec-

tion methods. We aim to provide a comparative guide to prac-

titioners who wish to use these techniques in specific flow

problems.

In this comparison, we consider twelve coherent struc-

ture detection methods. After a brief introduction to each

method, we compare their outputs on three examples, and

then summarize our findings in a list of strengths and weak-

nesses for each method. We classify the twelve methods into

two broad categories:

1. Diagnostic methods: They propose a scalar field, derived

from physical intuition, whose features are expected to

highlight coherent structures. These methods are reviewed

in Section III.

2. Analytical methods: They define the coherent structures

as the solutions of mathematically formulated coherence

problems. These methods are reviewed in Section IV.
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Being diagnostic or analytical in nature is not an a priori
positive or negative feature for a method. As we point out in

Section IV, a heuristic but insightful diagnostic method

might outperform a rigorous mathematical coherence princi-

ple that has been formulated with disregard to the underlying

physics. On the computational side, a consistently perform-

ing diagnostic may also be preferred as a tool for quick

exploration over a rigorous mathematical approach with

heavy computational cost. On the other hand, diagnostic

tools offering purely visual inference of structures must meet

a minimum expectation: they must consistently outperform

visual inference from randomly chosen scalar fields, such as

those shown for our three examples in Fig. 1.

These three examples include the following:

1. The Bickley jet: an analytically defined velocity field with

quasi-periodic time dependence.

2. Two-dimensional turbulence: a high-resolution data set

obtained from the direct numerical simulation of the

Navier–Stokes equations in two dimensions.

3. Jupiter’s wind field: an observational data set of Jupiter’s

atmospheric velocities, reconstructed from video footage

taken by the Cassini spacecraft.

These examples are ordered in an increasing level of dif-

ficulty, given how much information is available about the

flow in each of them. The Bickley jet velocity field is tempo-

rally aperiodic but recurrent, and known analytically at all

locations and times. The two-dimensional turbulence dataset

is slightly more challenging, as the velocity field is fully aperi-

odic, known only at discrete points in space and time. One

could, however, still increase the resolution of the data by

solving the Navier–Stokes equations over finer grids (or,

equivalently, by including more Fourier modes). Furthermore,

the temporal duration of the dataset can also be increased at

will. The third example involving the Jupiter’s atmospheric

velocities poses the greatest challenge, as the spatial and tem-

poral length and resolution of this fully aperiodic dataset are

limited by the available video footage recorded by the Cassini

mission.

Comparisons of a limited number of methods on specific

structures in individual examples have already

appeared.17–19 Here, the objective is to perform a systematic

comparison on a variety of challenging flow fields in which a

ground truth can nevertheless be reasonably established. Our

scope is also broader in that we cover all known types of

Lagrangian structures in two-dimensions: elliptic (vortex-

type), hyperbolic (repelling or attracting), and parabolic (jet-

core-type) material structures.

The rest of this paper is organized as follows. In

Sections II–IV, we introduce the twelve diagnostic and ana-

lytical methods considered in this comparison. Despite our

efforts to keep the method descriptions to a minimum, the

introduction of analytical methods necessarily takes up more

space due to the need to explain the mathematical principles

underlying them. In Section V, the methods are applied to

the three examples, with different aspects of their perfor-

mance compared. Our overall assessment of the strengths

and weaknesses of each method appears in Section VI, and a

proposed set of minimal requirements for Lagrangian coher-

ence detection methods is given in Section VII.

II. GENERAL SETUP

We consider here flows defined by two-dimensional

unsteady velocity fields v(x, t) known over a finite time inter-

val [t0, t1]. The fluid particle motions satisfy the differential

equation

_x ¼ vðx; tÞ; x 2 U � R2; t 2 t0; t1½ �; (1)

whose trajectories are denoted by x(t;t0,x0), with x0 referring

to their initial position at time t0. Our focus here is

Lagrangian, concerned with coherent behavior exhibited by

sets of trajectories of (1). This is in contrast to the classic

Eulerian approach taken in fluid mechanics which focuses on

coherent features of v(x, t).
Central to all Lagrangian approaches is the flow map

Ft
t0
ðx0Þ : x0 7! xðt; t0; x0Þ; (2)

mapping initial positions x0 to their current positions x at

time t. Several Lagrangian coherence-detection methods also

rely on the flow gradient rFðx0Þ (or deformation gradient),

the derivative of the flow map with respect to the initial con-

dition x0. The stretching induced by the flow gradient is cap-

tured by the right Cauchy–Green strain tensor Ct
t0

of the

deformation field, defined as20

Ct
t0
ðx0Þ ¼ rFt

t0

h i>
rFt

t0
; (3)

with the symbol > indicating matrix transposition. In our

present two-dimensional setting, the symmetric and positive

definite tensor Ct
t0

has two positive eigenvalues 0 < k1 � k2

and an orthonormal eigenbasis fn1; n2g satisfying

FIG. 1. Three arbitrary advected scalar fields evaluated on advected particle

positions (x, y) at the end time, and then plotted over the initial positions (x0,

y0) of the particles. (a) Quasiperiodic Bickley jet, (b) two-dimensional turbu-

lence, and (c) observed wind field of Jupiter.
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Ct
t0
ðx0Þniðx0Þ ¼ kiðx0Þniðx0Þ; jniðx0Þj ¼ 1; i ¼ 1; 2;

n2ðx0Þ ¼ Xn1ðx0Þ; X ¼
0 �1

1 0

 !
: (4)

III. DIAGNOSTICS FOR LAGRANGIAN COHERENCE

We first briefly review five Lagrangian diagnostic scalar

fields that have been proposed for material coherence detec-

tion in the literature. They are classified as Lagrangian

because their pointwise value at a point x0 of the flow

domain depends solely on the trajectory segment running

from the location x0 at time t0 up to the location Ft1
t0ðx0Þ at

time t1. Based on simple geometric or physical arguments,

these diagnostics are expected to highlight coherence or lack

thereof in the flow. Most of them, however, offer neither a

strict definition of the coherent flow structures they seek nor

a precise mathematical connection between their geometric

features and those flow structures.

A basic expectation for such diagnostic scalar fields is that

they should at least outperform generic passively advected sca-

lar fields in their diagnostic abilities. By definition, Lagrangian

coherent structures (LCSs) create coherent trajectory pat-

terns,15 and hence, the footprint of LCSs should invariably

appear in any generic tracer distribution advected by trajecto-

ries. To this end, in our comparisons performed on given

examples, we have also included ad hoc passive scalar fields

as baselines for the efficacy of diagnostic and mathematical

approaches (see Figure 1).

Another expectation for Lagrangian diagnostics stems

from the fact that LCSs are composed of the same material
trajectories, irrespective of what coordinate system we use to

study them. Therefore, the assessment of whether or not a

trajectory is part of an LCS is inherently independent of the

frame of the observer.13 Any self-consistent two-dimensional

LCS method should, therefore, identify the same set of tra-

jectories as LCSs under all Euclidean observer changes of

the form x¼Q(t)yþ b(t), where y 2 R2 is the coordinate in

the new frame, QðtÞ 2 SOð2Þ represents time-dependent

rotation, and bðtÞ 2 R2 represents time-dependent transla-

tion. A similar requirement holds, with appropriate modifica-

tions, for three-dimensional LCS-detection methods.

Frame-invariance is particularly important in truly

unsteady flows, which have no distinguished frame of Ref.

21. Within this class, geophysical fluid flows represent an

additional challenge, because they are defined in a rotating

frame. The detection or omission of a feature by a diagnostic

in such flows, therefore, should clearly not be an artifact of

the co-rotation of the frame with the Earth. For each sur-

veyed diagnostic below, we will discuss its objectivity or

lack thereof.

A. Finite-time Lyapunov exponent (FTLE)

Haller22,23 proposed that the time t0 positions of the

strongest repelling LCSs over the time interval [t0, t1] should

form ridges of the finite-time Lyapunov exponent (FTLE)

field

FTLEt1
t0

x0ð Þ ¼
1

jt1 � t0j
log krFt1

t0
x0ð Þk;

¼ 1

jt1 � t0j
log

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 x0ð Þ

q
: (5)

Similarly, time t1 positions of the strongest attracting LCSs

over [t0, t1] are expected to be marked by ridges of the

backward-time FTLE field FTLEt0
t1

. Repelling and attracting

LCSs are usually referred to as hyperbolic LCSs, as they

generalize the notion of hyperbolic invariant manifolds to

finite-time dynamics. The FTLE field is objective by the

objectivity of the invariants of the Cauchy–Green strain

tensor.24

The FTLE field (5) measures the largest finite-time

growth exponent experienced by infinitesimal perturbations

to the initial condition x0 over the time interval [t0, t1]. It is

therefore a priori unclear if a given FTLE ridge indeed

marks a repelling material surface, or just a surface of high

shear (cf. Ref. 15, for example). Nevertheless, time-evolving

FTLE ridges computed over sliding intervals [t0þ T,t1þ T]

with varying T are often informally identified with LCSs.

There are, however, both conceptual and mathematical

issues with such an identification, and the evolving ridges so

obtained may be far from Lagrangian.15

Motivated by the fact that material stretching is minimal

along jet steams, FTLE trenches have been proposed for

detection of unsteady jet cores (or parabolic LCSs).25,26

While, in many examples, the jet cores are closely approxi-

mated by the FTLE trenches, there exist counterexamples

where an FTLE trench does not coincide with the jet.27

The FTLE diagnostic is not geared towards detecting

elliptic (vortex-type) LCSs in finite-time flow data. While

the FTLE values are expected to be low near elliptic LCSs, a

sharp boundary for vortex-type structures does not generally

emerge from this diagnostic, as seen in our examples below.

B. Finite-size Lyapunov exponent (FSLE)

An alternative assessment of perturbation growth in the

flow is provided by the Finite-Size Lyapunov exponent

(FSLE). To define this quantity, we first select an initial sep-

aration d0 > 0 and a separation factor r> 1 of interest. The

separation time sðx0; d0; rÞ is then defined as the minimal

time in which the distance between a trajectory starting from

x0 and some neighboring trajectory starting d0-close to x0

first reaches rd0. The FSLE associated with the location x0 is

then defined as28–30

FSLE x0; d0; rð Þ ¼ log r

s x0; d0; rð Þ : (6)

In contrast to the FTLE field, the FSLE field focuses on

separation scales exceeding the threshold r, and hence can be

used for selective structure detection. A further conceptual

advantage of the FSLE field is that its computation requires

no a priori choice of an end time t1.

By analogy with FTLE ridges, FSLE ridges have also

been proposed as indicators of hyperbolic LCSs (see Refs.

30–32). This analogy is mathematically justified for sharp
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enough FSLE ridges of nearly constant height.33 A general

correspondence between FSLE and FTLE ridges, however,

does not exist. This is because FSLEðx0; d0; rÞ lumps trajec-

tory separation events occurring over different time intervals

into the same scalar field, and hence has no general relation-

ship to the single finite-time flow map Ft
t0
ðx0Þ.

The FSLE field has generic jump discontinuities and a

related sensitivity to the computational time step (see Ref.

33 for details). The FSLE, however, is still an objective field,

given that it is purely a function of particle separation.

C. Mesochronic analysis

Mezić et al.34 proposed the eigenvalue configuration of

the deformation gradient rFt1
t0ðx0Þ as a diagnostic for qualita-

tively different regions of material mixing. Specifically, their

mesochronic classification considers regions where rFt1
t0ðx0Þ

have real eigenvalues as mesohyperbolic, and regions where

rFt1
t0ðx0Þ has complex eigenvalues as mesoelliptic.

Mesohyperbolic regions are further divided into two catego-

ries as follows. Since rFt1
t0ðx0Þ is an orientation preserving

diffeomorphism, we necessarily have detrFt1
t0ðx0Þ > 0, which

implies that real eigenvalues of rFt1
t0ðx0Þ are either both nega-

tive or both positive. Mezic et al.34 refer to the case where the

real eigenvalues are both positive as mesohyperbolic without
(a 180�) rotation. If the eigenvalues are real and negative, the

trajectory is called mesohyperbolic with (a 180�) rotation.

Data collected in the aftermath of Deepwater Horizon

Spill34 show that mixing zones in the ocean are predomi-

nantly mesohyperbolic when the integration time is selected

to be about 4 days. Longer studies of ocean data suggest that

oceanic flows are predominantly mesoelliptic over time

scales beyond four days.17 This is in line with the expecta-

tion that accumulated material rotation along general trajec-

tories unavoidably creates nonzero imaginary parts for the

eigenvalues of rFt1
t0ðx0Þ, even if the underlying trajectory

starting from x0 is of saddle-type.

From a mathematical point of view, the linear mapping

rFt1
t0ðx0Þ is a two-point-tensor between the tangent spaces

Tx0
R2 and TF

t1
t0
ðx0ÞR

2 of R2. Posing an eigenvalue problem

for rFt1
t0ðx0Þ is, therefore, only meaningful when these tan-

gent spaces coincide, i.e., x0 ¼ Ft1
t0ðx0Þ lies on a trajectory

that returns exactly to its starting point at time t. For this rea-

son, it is difficult to attach a mathematical meaning to the

mesochronic partition in general unsteady flows in which

such returning trajectories are nonexistent.

The mesochronic partition of the flow domain is not

objective due to the frame-dependence of the deformation

gradient rFt1
t0ðx0Þ (see, e.g., Ref. 35). As a consequence, the

elliptic-hyperbolic classification of trajectories obtained

from this method will change under changes of the observer.

The mesochronic notions of hyperbolicity and ellipticity

differ from classic hyperbolicity and ellipticity concepts for

Lagrangian trajectories. Even regions of concentric closed

orbits in a steady flow (a classic case of elliptic particle

motion) are marked by nested sequences of alternating meso-

elliptic and mesohyperbolic annuli (see Ref. 34, for an

example). No published account of a coherent vortex defini-

tion from these plots is yet available, but outermost bound-

aries of smooth and nested elliptic, hyperbolic-with-rotation

annulus sequences have recently been suggested as coherent

structure boundaries36 for general unsteady flow. We will

adopt this definition (i.e., at least three nested annuli of dif-

ferent mesochronic types, containing no saddle-type critical

points of detrFt1
t0ðx0Þ) for a mesoelliptic coherent structure

in our comparison study.

D. Trajectory length

Mancho et al.37 propose that abrupt variations (i.e.,

curves of high gradients) in the arc-length function

Mt1
t0
ðx0Þ ¼

ðt1

t0

jvðxðs; t0; x0Þ; sÞjds

of the trajectory x(s;t0,x0) indicate the time t0 positions of

boundaries of qualitatively different dynamics. The Mt1
t0 ðx0Þ

function is arguably the quickest to compute all Lagrangian

diagnostics considered here. It also naturally lends itself to

applications to float data, given that the arclength of a trajec-

tory can be computed without any reliance on a velocity field

or on neighboring trajectories.

As any scalar field computed along trajectories, Mt1
t0 ðx0Þ

is generally expected to show an imprint of Lagrangian

coherent structures, as indeed found by Mancho et al.37

There is, however, no established mathematical connection

between material coherent structures and features of Mt1
t0 ðx0Þ.

Indeed, several counter-examples to coherent structure

detection based on trajectory length are available.38,39

The function Mt1
t0 ðx0Þ is not objective or even Galilean

invariant. For instance, in a frame co-moving with any
selected trajectory xðs; t0; x0Þ, the trajectory itself has zero

arclength, and hence, its initial condition x0 will generi-

cally be a global minimum. The level curve structure of

Mt1
t0 ðx0Þ is not objective either, because the integrand of its

gradient field rMt1
t0 ðx0Þ consists of elements that are frame-

dependent.

E. Trajectory complexity

Rypina et al.40 propose a partitioning of the flow domain

into regions where trajectories exhibit different levels of

complexity. They quantify individual trajectory complexity

over a finite time interval [t0, t1] using the ergodicity defect
(cf. Ref. 41)

d s; x0; t0ð Þ ¼
XK

j¼1

Nj sð Þ
N
� s2

� �2

; f ; (7)

where N is the total number of trajectories, and Nj(s) is the

number of trajectory points that lie inside the jth element of

a square grid of side-length s. The integer K¼ 1/s2 denotes

the total number of boxes forming the grid. The total area of

the full flow domain is normalized to unity. Mathematically,

formula (7) is just the L2 deviation of a histogram based on

the trajectory points from a constant histogram.
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The “most non-ergodic trajectory” is a fixed point, for

which we obtain d¼ 1. In contrast, for an “ergodic trajectory”

(uniformly distributed trajectory), one should obtain

lims!0 dðs; x0; t0Þ ¼ 0. (The terms ergodic and non-ergodic

used by Rypina et al.40 are to be understood at an informal

level here, given that all infinite trajectories (including fixed

or periodic points of a map) support ergodic invariant mea-

sures.) Rypina et al.40 define the average ergodicity defect

over different scales of s as

�dðs; x0; t0Þ ¼ meansðdðs; x0; t0ÞÞ; (8)

where the mean is taken over a broad range of spatial scales

s of interest.

While no mathematical connection is known between

the ergodicity defect and finite-time coherent structures,

locations of abrupt changes (large gradients) in the topology

of �dðs; x0; t0Þ as a function of x0 are expected to mark bound-

aries between qualitatively different flow regions. The quan-

tity �dðs; x0; t0Þ is objective, because presence in, or absence

from, a grid cell is invariant under rotations and translations,

as long as the same rotations and translations are applied to

both the trajectories and the grid cells. The approach is sim-

ple to implement and has proven itself effective on low-

resolution data.40

F. Shape coherence

Ma and Bollt42 seek coherent set boundaries as closed

material lines at time t0 that are nearly congruent (two geo-

metric objects are called congruent if one can be transformed

into the other by a combination of rigid-body motions) with

their advected images at time t1. Such near-congruence is

ensured by classic results if the curvature distributions along

the original and advected curve are close enough.

Motivated by examples of steady linear flows, Ma and

Bollt42 propose finding shape-coherent curves as minimizers

of the angle between the dominant eigenvectors of the for-

ward- and the backward-time Cauchy–Green strain tensors.

Stated in our present context, the position of the boundary of

a shape-coherent set at time t̂ ¼ ðt0 þ t1Þ=2 is a closed curve

along which the splitting angle function

hðx̂0Þ ¼ arcsinðjnf w
2 ðx̂0Þ � nbw

2 ðx̂0ÞjÞ; x̂0 ¼ Ft̂
t0
ðx0Þ (9)

vanishes. Here, we used the definitions

Ct1
t̂
ðx̂0Þnf w

2 ðx̂0Þ ¼ kf w
2 ðx̂0Þnf w

2 ðx̂0Þ;
Ct0

t̂
ðx̂0Þnbw

2 ðx̂0Þ ¼ kbw
2 ðx̂0Þnbw

2 ðx̂0Þ; jnf w
2 j ¼ jn

bw
2 j ¼ 1:

Ma and Bollt19,42 argue that level curves of Eq. (9) with

jhðx̂0Þj � 1 should show significant shape coherence over a

finite time interval. They support this expectation with exam-

ples of steady, linear velocity fields.

For unsteady flows with general time dependence, the

smallness of jhðx̂0Þj � 1 along closed structure boundaries

remains a heuristic assertion that we will test here on tempo-

rally aperiodic examples. Locating closed level curves of

hðx̂0Þ reliably is a highly challenging numerical problem to

which Refs. 19 and 42 offer no immediate solution. For a

direct comparison with other methods, we will simply iden-

tify the set jhðx̂0Þj � 1 for initial conditions x̂0 seeded at

time t̂, and then advect these initial conditions under the flow

map Ft0
t̂

to time t0. The resulting open set must then necessar-

ily contain the structure boundary curves envisioned by

Refs. 19 and 42. The splitting angle diagnostic (9) is objec-

tive, given that it only depends on the angle between appro-

priate Cauchy–Green eigenvectors.

IV. MATHEMATICAL APPROACHES TO LAGRANGIAN
COHERENCE

Here, we recall approaches that locate coherent struc-

tures by providing precise solutions to mathematically for-

mulated coherence principles. These approaches, however,

are only precise relative to their starting coherence principle.

One still needs to test whether those coherence principles

capture observed coherent trajectory patterns consistently

and effectively in various finite-time data sets. Indeed, a heu-

ristic but well-motivated diagnostic tool may consistently

outperform a rigorous mathematical approach that is based

on an ineffective coherence principle.

As in the case of diagnostics, we consider frame-

indifference (or objectivity) to be a fundamental requirement

for the self-consistency of mathematical approaches to

Lagrangian coherence. All mathematical approaches consid-

ered below satisfy this requirement.

A. Transfer operator method

Transfer operator approaches provide a global view of

density evolution in the phase space, identifying maximally

coherent or minimally dispersive regions over a finite time

interval [t0, t1]. Such regions are known as almost-invariant
sets for autonomous systems43–45 or coherent sets for non-

autonomous systems46–48 and minimally mix with the sur-

rounding phase space.

1. Probabilistic transfer operator method

Following the approach from Ref. 48, we let M � Rd

be a compact domain and let l denote a reference probability

measure on M representing the distribution or concentration

of a quantity of interest. In many cases, one would select l
to be the normalized volume on M; this would treat all parts

of the phase space equally. In other cases, one might select l
to be the distribution of a chemical in a fluid or the distribu-

tion of a (compressible) air mass in the atmosphere.

We now imagine advection-diffusion dynamics; this

could arise from purely advective dynamics with some addi-

tional small amplitude �-diffusion, as in the examples con-

sidered in this comparative study, or this could be genuine

advection-diffusion dynamics. Specializing to the former

case, we have a flow map Ft1
t0 : M ! Ft1

t0ðMÞ from some ini-

tial time t0 to some final time t1. Roughly speaking, we wish

to identify subsets At0 � M; At1 � Ft1
t0ðMÞ that maximize the

quantity

lðAt0 \ ðFt1
t0
Þ�1At1Þ=lðAt0Þ;
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subject lðAt0Þ � 1=2 (At0 comprises not more than half of

M). The numerator represents the l-proportion of At0 that is

mapped into At1 , and the entire expression is therefore the

fraction of l-mass that is mapped from At0 to At1 .

The determination of these sets is achieved by comput-

ing the second singular value of a normalized transfer opera-

tor L� and extracting the sets At0 and At1 from level sets of

the corresponding left and right singular vectors, respec-

tively; see Ref. 48 or the survey Ref. 49 for details.

One can characterise the amount of mixing that has

occurred during the interval [t0, t1] as

q :¼ max
At0

;At1
�M

hL�1At0
; 1At1
i

l At0ð Þ
þ
hL�1Ac

t0
; 1Atc

1

i
l Atc

0

� �
( )

: (10)

The quantity q probabilistically quantifies the degree to

which one can find agreement between pairs of sets Ft1
t0 At0

and At1 (and between their complements). Larger q means

sets can be found with greater agreement and that less mix-

ing has occurred. One has the theoretical upper bound

q � 1þ r2, where r2 is the second singular value of L�
(Theorem 2 (Ref. 48)). One can represent (10) as an L2 maxi-

misation problem, the solutions of which are left and right

singular vectors of L�; see Ref. 48. The objective of this

maximisation problem is an L2 relaxation of (10) and using a

standard approach, one recovers feasible solutions of (10) as

optimal level sets (optimal according to the objective (10))

of the solutions of the relaxation; in this case, level sets of

the left and right singular vectors. Further singular vectors

can be used to find multiple coherent sets by either (i) thresh-

olding individual singular vectors as in the numerics section

or (ii) clustering several vectors embedded in Euclidean

space as in Ref. 44.

In practice, a common way to numerically compute L is

to use Ulam’s method. One (i) partitions M and Ft1
t0ðMÞ into a

fine grid of sets, (ii) samples several initial points in each

grid set, (iii) numerically integrates these initial points, and

(iv) computes grid set to grid set transition probabilities by

counting how many initial points from each grid set A enter

another grid set B. If there are m grid sets in M and n grid

sets in Ft1
t0ðMÞ, one obtains a sparse m� n stochastic transi-

tion matrix P, which may be identified as a Markov chain

transition matrix with each grid set considered a state. One

now normalizes this matrix P to produce a matrix L approxi-

mating L and computes singular vectors (see Refs. 47 and 48

for details). The small additional �-diffusion need not be

explicitly simulated because numerical diffusion already

arises from the discretization of M and Ft1
t0ðMÞ into grid sets.

Alternative, non-Ulam numerical implementations of var-

iations of the transfer operator method from Ref. 48 include

Ref. 50 which uses approximate Galerkin projection onto a

basis of thin-plate splines; Ref. 51 which uses spectral collo-

cation, and Ref. 52, which uses diffusion map constructions.

2. Dynamic Laplace operator method

Considering the �! 0 (i.e., zero diffusion amplitude)

limit in Sec. IV A 1 leads to a geometric theory of finite-time

coherent sets, which targets the boundaries of coherent

families of sets. For simplicity of presentation, assume that

the flow map Ft1
t0 : M ! Ft1

t0ðMÞ from Sec. IV A 1 is volume-

preserving. The goal of the dynamic Laplacian approach53 is

to seek surfaces C � M that disconnect a bounded phase

space M in such a way that the advected disconnecting

surface Ft1
t0ðCÞ remains as short as possible relative to the

volume of the disconnected parts for t 2 ½t0; t1�. Thus, the

region enclosed by C (or by C and by the boundary of the

phase space) is coherent because filamentation of the bound-

ary is minimized under nonlinear evolution of the dynamics.

Specifically, for a finite subset T of [t0, t1] containing t0 and

t1, the quantity
�

1
jT j
P

t2T ‘d�1ðFt
t0
ðCÞÞ

�
=min ‘ðM1Þ; ‘ðM2Þ

� �
is minimized over smooth disconnecting C, where ‘ is the

volume measure on the phase space, ‘d�1 is the induced vol-

ume measure for hypersurfaces, and M1, M2 partition phase

space with shared smooth boundary C.

To solve this problem, one considers the dynamic
Laplace operator

�
D :¼ 1

jT j
X
t2T

Ft
t0
�� � Ft

t0

	 
�1

on M. The standard Laplace-Beltrami operator � is exten-

sively used in manifold learning or nonlinear dimensionality

reduction via Laplace eigenmaps and spectral clustering.54

The second and lower eigenvectors of �
D reveal further geo-

metric information in analogy to the eigenvectors of the stan-

dard (static) Laplace operator54 and multiple coherent sets

can be extracted using the methods described in Sec. IV A 1

for transfer operators. In practice, one approximates the

above operator with a numerical method appropriate for

elliptic self-adjoint operators (e.g., finite difference,53 radial

basis function collocation,55 or others).

Because this method arises as a zero-diffusion limit53

of the probabilistic transfer operator method discussed in

Sec. IV A 1, the numerical results obtained from the

dynamic Laplace operator approach are very similar and

will not be discussed separately in our comparison. Both

the probabilistic transfer operator and dynamic Laplace

operator methods are objective by construction. An advan-

tage of the dynamic Laplace operator approach is the flexi-

bility in the method of approximation of the operators.

Higher-order schemes may be employed when the dynam-

ics is smooth in order to exploit the smoothness and reduce

the input and computational requirements.55 The theory

and constructions for general non-volume-preserving Ft1
t0

and general reference measure l are developed in Ref. 56.

Reference 57 describes a related theory based on a single

Riemannian metric.

B. Hierarchical coherent pairs

The transfer operator method described in Ref. 47

focused primarily on identifying two sets, A0 and its comple-

ment ~A0, that partition a given region of interest into two

coherent sets. Ma and Bollt58 propose an extension of this

idea that enables the identification of multiple coherent pairs

in a given domain. The extension is based on an iterative and

hierarchical refinement of coherent pairs using a reference
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measure of probability l. Specifically, Ma and Bollt58 refine

the coherent pairs A0 and ~A0 identified earlier over several

steps by applying the probabilistic transfer operator method

restricted to these sets. This iterative refinement of coherent

pairs can be stopped once l shows no appreciable improve-

ment compared to the earlier iterations. We refer to this

method as hierarchical transfer operator method throughout

our comparison. This “repeated bisection” approach is an

alternative to extracting multiple coherent sets using multiple

singular vectors of L as described in Sec. IV A 1.

C. Fuzzy cluster analysis of trajectories

Recently, Froyland and Padberg-Gehle59 proposed a

method based on traditional fuzzy C-means (FCM) cluster-

ing60,61 to identify finite-time coherent regions from incomplete

and sparse trajectory datasets. Their method locates coherent

sets as clusters of trajectories according to the dynamic distance

Dðx; yÞ ¼
Ð t1

t0
kxðtÞ � yðtÞk2 dt, where xðtÞ; yðtÞ are a pair of

trajectories over a finite time interval ½t0; t1�.
To identify such coherent sets, Ref. 59 first constructs a

trajectory array X 2 Rn�dm whose rows are vectors ðXiÞi¼1;…;n

containing concatenated positions of n Lagrangian particles

over m discrete time intervals in d-dimensional space; that is,

xi ¼ ðxi;t0 ;…; xi;t1Þ. Second, Ref. 59 applies the fuzzy C-means

(FCM) algorithm to the trajectory array X, which seeks to split

the trajectories into K clusters based on the distance between a

given trajectory point Xi and initial cluster centers ðCjÞj¼1;…;K

predefined in Rdm, using the following objective function:

min
Xn

i¼1

Xc

j¼1

um
ij kXi � Cjk2 ¼ min um

ij

Xt1

t¼t0

kxi;t � cj;tk2; (11)

where ui,j is the membership value defined as

ui;j ¼
XK

j¼1

jjXi � Ckjj
jjXi � Cjjj

 ! 2
m�1

2
4

3
5
�1

; 0 � ui;j � 1;

1 � m <1: (12)

The membership value ui,j describes the likelihood that a

trajectory point Xi belongs to a cluster associated with the

cluster center Cj, for a fixed parameter m specified in

advance.

The parameter m determines the fuzziness of cluster

boundaries, that is, how much clusters are allowed to overlap.

A large m results in less extreme membership values uk,j, and

consequently fuzzier clusters. In the limit m¼ 1, the member-

ships converge to 0 or 1, and hence, the FCM results in non-

overlapping clusters in a fashion similar to the K-means algo-

rithm.62 The cluster center is the mean of all trajectory points,

weighted by the degree of belonging to each of the K clusters.

Specifically, the jth cluster center is defined as

Cj ¼

Pn
i¼1

ui;jð ÞmXi

Pn
i¼1

ui;jð Þm
: (13)

To optimize (11), the FCM algorithm iteratively com-

putes membership values (12) and relocates the cluster cen-

ters using (13), until the objective function (11) shows no

substantial improvement. Finally, given the membership val-

ues ui,j and cluster centers Cj, each trajectory is assigned to

only one cluster based on the maximum membership value it

carries.

Those trajectories carrying low membership values for all

clusters, with respect to a given threshold (selected as 0.9 in

all our examples below), are occasionally considered to be

non-coherent.59 The incomplete data case (e.g., some or all

trajectories have missing “gaps”) is also described in Ref. 59.

We finally note that the fuzzy cluster analysis of trajectories is

an objective approach, as the label of trajectories remains

invariant under any affine coordinate transformation.59

D. Spectral clustering of trajectories

Hadjighasem et al.63 propose spectral clustering to iden-

tify coherent structures by grouping Lagrangian particles

into coherent and incoherent clusters. Specifically, they

define a coherent structure as a distinguished set of

Lagrangian trajectories that maintain short distances among

themselves relative to their distances to trajectories outside

the structure.

The spectral clustering approach starts with n trajecto-

ries whose positions are available at m discrete times t0 <
t1 < 	 	 	 < tk < 	 	 	 < tm�1 ¼ tf in a two-dimensional spatial

domain. This information is stored in an n�m� 2-dimen-

sional numerical array with elements xi
k :¼ xiðtkÞ 2 R2. The

dynamical distance rij between Lagrangian particles xi and

xj is then defined as

rij :¼ 1

tf � t0

ðtf

t0

jxi tð Þ � xj tð Þjdt


 1

tf � t0

Xm�2

k¼0

tkþ1� tk

2
jxi

kþ1� x
j
kþ1j þ jxi

k � x
j
kj

	 

; (14)

where j 	 j denotes the spatial Euclidean norm. Note that the

dynamic distance (14) is an objective metric, as it only

depends on the distance of trajectory points.

Next, Ref. 63 constructs a similarity graph G¼ (V,E,W),

which is specified by the set of its nodes V ¼ v1;…; vN , the

set of edges E � V � V between nodes, and a symmetric

similarity matrix W 2 Rn�n which assigns weights wij to the

edges eij. The similarity matrix entries (or weights) wij � 0

give the probability of nodes vi and vj to be in the same clus-

ter. In the context of coherent structure detection, the graph

nodes V are Lagrangian particles themselves, with the associ-

ated similarity weights defined as

wij ¼ 1=rij for i 6¼ j: (15)

With the similarity weights at hand, the degree of a

node vi 2 V is defined as

degðviÞ :¼
Xn

j¼1

wij:
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The subsequent degree matrix D is then constructed as a

diagonal matrix with the degrees degðviÞ in the diagonal.

Given a subset of nodes A 2 V, the size of A is measured by

volðAÞ :¼
X
i2A

degðviÞ;

with summation over the weights of all edges attached to

nodes in A.

With the notation developed so far, the problem of

coherent structure detection can now be posed in terms of a

normalized graph cut problem: Given a similarity graph

G¼ (V,E,W), partition the graph nodes V into k sets

A1;A2;…;Ak such that the following conditions hold:

1. Within-cluster similarity

Nodes in the same cluster are similar to each other, i.e.,

particles in a coherent structure have mutually short dynami-

cal distances.

2. Between-cluster dissimilarity

Nodes in a cluster are dissimilar to those located in the

complementary cluster. In other words, particles in a coher-

ent structure have long dynamical distances from the rest of

the particles, particularity from those located in the mixing

region (i.e., noise cluster) that fills the space outside the

coherent structures.

The normalized cut that implements the above (dis)simi-

larity conditions can be formulated mathematically as

NCut Ai; :::;Akð Þ ¼ 1

2

Xk

i¼1

cut Ai; �Ai

� �
vol Aið Þ

;

cut A1; :::;Akð Þ ¼ 1

2

Xk

i¼1

W Ai; �Ai

� �
;

(16)

where �A denotes the complement of set A in V. The minimi-

zation of the normalized cut exactly is an NP-complete prob-
lem. The solution of Ncut problem, however, can be

approximated by solutions of a generalized eigenproblem

associated with the graph Laplacian L¼D � W, defined as64

Lu ¼ kDu: (17)

In particular, the first k eigenvectors u1;…; uk, whose

corresponding eigenvalues are close to zero, minimize

approximately the Ncut objective (16). The value of k, in

this case, is equal to the number of eigenvalues preceding

the largest gap in the eigenvalue sequence.65 The first k
generalized eigenvectors u then offer an alternative repre-

sentation of the weighted graph data such that each leading

eigenvector highlights a single coherent structure in the

computational domain. Finally, these k coherent structures

besides the complementary incoherent region can be

extracted from the eigenvectors u1;…; uk using a simple K-

means algorithm62 or more sophisticated approaches, such

as PNCZ.66

A related variational level-set formulation of the spectral

clustering approach is now available for two-dimensional

flows.67

E. Stretching-based coherence: Geodesic theory
of LCS

The geodesic theory of LCSs is a collection of global

variational principles for material surfaces that form the cen-

terpieces of coherent, time-evolving tracer patterns.15 Out of

these material surfaces, hyperbolic LCSs act as generalized

stable and unstable manifolds, repelling or attracting neigh-

boring material elements with locally the highest rate over a

finite-time interval. Parabolic LCSs minimize Lagrangian

shear and hence serve as generalized jet cores. Finally, ellip-

tic LCSs extend the notion of Kolmogorov–Arnold–Moser

(KAM) tori and serve as generalized coherent vortex bound-

aries in finite-time unsteady flows. Geodesic LCS theory is

objective, as it builds on material notions of strain and shear

that are expressible through the invariants of the right

Cauchy–Green strain tensor.

Below we summarize the main results for two-dimensional

flows from Farazmand et al.27 for hyperbolic and parabolic

LCSs and from Haller and Beron–Vera2 for elliptic LCSs. A

general review with further mathematical LCS results, as well as

extensions to three-dimensional flows, can be found in Ref. 15.

1. Stationary curves of the average shear: Hyperbolic
and parabolic LCSs

A shearless LCS is a material curve whose average

Lagrangian shear shows no leading-order variation when

compared to nearby C1-close material lines. Specifically, the

time t0 position of a shearless LCS is a stationary curve for

the material-line-averaged tangential shear functional.

Farazmand et al.27 show that such LCSs coincide with null-

geodesics of the metric tensor

Dt1
t0

x0ð Þ ¼
1

2
Ct1

t0
x0ð ÞX� XCt1

t0
x0ð Þ

h i
; (18)

with the rotation matrix X given in (4). The tensor Dt1
t0ðx0Þ is

Lorentzian (i.e., indefinite) wherever k1ðx0Þ 6¼ k2ðx0Þ: All

null-geodesics of Dt1
t0ðx0Þ are found to be trajectories of one

of the two line fields

x00 ¼ njðx0Þ; j ¼ 1; 2: (19)

We refer to trajectories of (19) with j¼ 1 as shrink lines,

as they strictly shrink in arc-length under the action of the

flow map Ft1
t0 . Similarly, we call trajectories of (19) with

j¼ 2 stretch lines, as they strictly stretch under Ft1
t0 . For lack

of a well-defined orientation for eigenvectors, Equation (19)

defines a line field,68 not an ordinary differential equation.

Nevertheless, the trajectories of (19) (i.e., curves tangent to

the eigenvector field nj) are well-defined at all points where

k1ðx0Þ 6¼ k2ðx0Þ.
Repelling LCSs are defined as special shrink lines that

start from local maxima of k2ðx0Þ; attracting LCSs, by con-

trast, are special stretch lines that start from local minima of

k1ðx0Þ. As a consequence of their definitions, repelling and
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attracting LCSs (or hyperbolic LCSs, for short) have a role

similar to that of stable and unstable manifolds of strong sad-

dle points in a classical dynamical system. Between any two

of their points, hyperbolic LCSs are solutions of the station-

ary shear variational problem under fixed endpoint boundary

conditions.

Parabolic LCSs, in contrast, are composed of structur-

ally stable chains of alternating shrink–stretch line segments

that connect tensorline singularities (i.e., points where

k1ðx0Þ ¼ k2ðx0Þ). Out of all such possible chains, one builds

parabolic LCSs (generalized jet cores) by identifying tensor-

lines that are closest to being neutrally stable (cf. Ref. 27 for

further details). Parabolic LCSs are more robust under per-

turbations than hyperbolic LCSs, because they are solutions

of the original stationary shear variational principle under

variable endpoint boundary conditions.

2. Stationary curves of the average strain: Elliptic
LCSs

An elliptic LCS is a closed material line across which

the material-line-averaged Lagrangian stretching shows no

leading-order variation when compared to closed, C1-close

material lines. Specifically, the time t0 position of an elliptic

LCS is a stationary curve for the material-line-averaged tan-

gential strain functional. As shown by Haller and

Beron–Vera,2 such stationary curves coincide with closed

null-geodesics of the one-parameter family of Lorentzian

metric tensors

Ek x0ð Þ ¼
1

2
Ct

t0
x0ð Þ � kI

h i
;

where the real number k > 0 parametrizes the family. These

closed null-geodesics turn out to be closed trajectories (limit

cycles) of the two, one-parameter families of line fields

x00 ¼ g6
k x0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 x0ð Þ � k2

k2 x0ð Þ � k1 x0ð Þ

s
n1 x0ð Þ

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k1 x0ð Þ

k2 x0ð Þ � k1 x0ð Þ

s
n2 x0ð Þ: (20)

A simple calculation shows that all limit cycles of (20)

are infinitesimally uniformly stretching. Specifically, any

subset of such a limit cycle is stretched exactly by a factor of

k over the time interval ½t0; t1� under the flow map Ft1
t0 . As a

result, elliptic LCSs exhibit no filamentation when advected

under the flow map Ft1
t0 . Elliptic LCSs occur in nested fami-

lies due to their structural stability with respect to changes in

k. The outermost member of such a nested limit cycle family

serves as a Lagrangian vortex boundary.

For computing geodesic LCSs in the forthcoming exam-

ples, we use the automated algorithm developed in Haller

and Beron-Vera2 and Karrasch et al.69 A MATLAB imple-

mentation of this method is provided in https://github.com/

LCSETH. A simplified algorithm for computing geodesic

LCSs without the use of the direction field is now avail-

able,70 but will not be used in this paper. There is no general

extension of geodesic LCS theory to three dimensional

flows, but related local variational principles for hyperbolic

and elliptic LCSs are now available in three dimensions as

well.71,72

F. Rotational coherence from the Lagrangian-averaged
vorticity deviation (LAVD)

Farazmand and Haller73 introduce the notion of rota-
tionally coherent LCSs as tubular material surfaces whose

elements exhibit identical mean material rotation over a

finite time interval [t0, t1]. They use the classic polar

decomposition to compute the polar rotation angle (PRA)

from the flow gradient rFt1
t0 for this purpose. Outermost

closed and convex level curves of the PRA then define ini-

tial positions of rotationally coherent vortex boundaries.

The rotational LCSs obtained in this fashion are objective

in two-dimensional flows.

Polar rotations, however, are not additive: the total PRA

computed over a time interval [t0, t1] does not equal the sum

of PRAs computed over smaller sub-intervals.18 As a conse-

quence, PRA does not match the experimentally observed

mean material rotation of finite-tracers in a fluid flow.

To resolve this dynamical inconsistency of the PRA,

Haller74 has recently developed a dynamic polar decomposi-

tion (DPD) as an alternative to the classic polar decomposi-

tion. The DPD of the deformation gradient is a unique

factorization of the form

rFt1
t0
¼ Ot1

t0
Mt1

t0
¼ Nt1

t0
Ot1

t0
; (21)

where Ot
t0

is the dynamic rotation tensor and Mt
t0

and Nt
t0

are

the left dynamic stretch tensor and right dynamic stretch ten-
sor, respectively. Compared to the classic polar decomposi-

tion, where the rotational and stretching components are

obtained from matrix manipulations, the dynamic rotation

and stretch tensors are obtained as solutions of linear differ-

ential equations. Specifically, the dynamic rotation tensor

Ot
t0
¼ ra0

aðtÞ is the deformation gradient of a purely rota-

tional flow a(t) satisfying

_a ¼ Wðxðt; x0Þ; tÞa; (22)

where the spin tensor W(x, t) is defined as Wðx; tÞ ¼ 1
2

ðrvðx; tÞ � ðrvðx; tÞÞTÞ. The dynamic rotation tensor Ot
t0

can further be factorized into two deformation gradients

Ot
t0
¼ Ut

t0
Ht

t0
: (23)

Here, the mean rotation tensor Ht
t0

describes a uniform rigid-

body-type rotation, and the relative rotation tensor Ut
t0

repre-

sents the deviation from this uniform rotation. The relative

rotation tensor Ut
t0
¼ ra0

aðtÞ turns out to be the deformation

gradient of the relative rotation flow aðtÞ satisfying

_a ¼ Wðxðt; x0Þ; tÞ � �WðtÞ
� �

a; (24)

where �WðtÞ is the spatial average of the spin tensor. On the

other hand, the mean rotation tensor Ht
t0
¼ rb0

bðtÞ is the

deformation gradient of the mean-rotation flow
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_b ¼ Ut0
t

�WðtÞUt
t0
b: (25)

As the fundamental matrix solution of a classic linear system

of ordinary differential equations (ODEs), the mean rotation

tensor Ht
t0

is dynamically consistent, implying that the intrin-
sic angle wt

t0
ðx0Þ, swept by Ut

t0
about its time-varying axis of

rotation over the time interval ½t0; t1�, is always the sum of

wt
t0
ðx0Þ and wt1

t ðFt
t0
ðx0ÞÞ for any choice of t 2 ½t0; t1�. The

intrinsic rotation angle wt
t0
ðx0Þ is, therefore, a dynamically

consistent and objective extension of the PRA in both two-

and three-dimensional flows (see Ref. 74 for more details).

Using these results, Haller et al.18 use the Lagrangian-
Averaged Vorticity Deviation (LAVD), i.e., twice the value

of the intrinsic rotation angle wt1
t0
ðx0Þ, to identify rotationally

coherent LCSs. The LAVD is defined as the trajectory-

averaged, normed deviation of the vorticity from its spatial

mean, i.e., as

LAVDt1
t0
ðx0Þ ¼

ðt1

t0

jxðxðs; x0Þ; sÞ � �xðsÞj ds; (26)

where �x is the spatial mean of the vorticity x. As in the case

of the PRA, initial positions of rotational LCSs are defined

as tubular level surfaces of the LAVD field along a singular

maximal level surface. By a tubular level surface, we mean

here a toroidal surface whose size exceeds a minimal length

scale threshold lmin and whose convexity deficiency (i.e.,

whose distance from its convex hull) stays below a maximal

value dmin. LAVD-based coherent Lagrangian vortex bound-

aries are then defined as outermost members of nested fami-

lies of tubular LAVD level surfaces. These boundaries are

objective by the objectivity of the LAVD field (cf. Ref. 18).

By construction, the LAVD-based coherent vortex bound-

aries may display tangential filamentation, but any developing

filament necessarily rotates at the same average rate with the

vortex body, without a global transverse breakaway.18 As a

notable implication for experimental observations, centers of

LAVD-based vortices (defined by local maxima of the LAVD

field) are proven to be the observed centers of attraction or

repulsion for inertial particles in the limit of vanishing Rossby

numbers (cf. Ref. 18). To compute the LAVD vortices, we use

here a MATLAB implementation of the LAVD method pro-

vided in https://github.com/LCSETH.

V. METHOD COMPARISONS ON THREE EXAMPLES

We now compare the performance of diagnostics and

mathematical methods reviewed in Sections III and IV on

three specific examples. Our first example, the Bickley jet, is

an analytically defined velocity field with quasiperiodic time

dependence.25 With its infinite time interval of definition and

recurrent time dependence, this example falls in the realm of

a classical dynamical systems problem with uniquely

defined, infinite-time invariant manifolds. The parameter set-

ting we choose, however, is not near-integrable, and hence,

the survival of the stable and unstable manifolds and KAM

tori of the unperturbed steady limit is a priori unknown. In

addition, the time dependence is recurrent but not periodic,

and hence, the classic Poincar map approach is not applica-

ble to visualize coherence in the flow.

Our second example is a finite-time velocity sample

obtained from a direct numerical simulation of two-

dimensional turbulence.75 This flow captures most major

aspects of a real-life coherence identification problem: the

velocity field is a dataset; several coherent regions exist,

move around and even merge; and the time dependence of

the vector field is aperiodic and non-recurrent.

Our third example is a velocity field reconstructed from

an enhanced video footage of Jupiter, capturing Jupiter’s

Great Red Spot (GRS).76 This last example has only a single

vortical structure, but the dataset is short relative to the rota-

tion period of the GRS. This shortness relative to characteris-

tic time scales in the dataset is an additional challenge

relative to our second example.

Table I compares the computational effort required by

each method in terms of the number of particles advected.

We select the constants nx, ny, and Ns in a way that the total

number of trajectories used in each method is the same for

each example. Beyond comparing the results in a single

composite plot for all methods in all three examples, we also

illustrate different aspects of select approaches on each

example.

Table II compares the degree of autonomy for each

method in terms of the number of parameters it requires from

the user. Here, we only list major parameters and ignore minor

parameters such as the integration time, grid resolution, and

ODE solver tolerance conditions, which are invariably

required by all the methods. Moreover, we specify some

parameters as optional since they are not strictly required for

the implementation. Importantly, the number of parameters

required by each method should be viewed according to the

functionality of the method. For instance, the majority of diag-

nostic tools do not offer any procedure for extracting coherent

structures, while other methods such as the geodesic, transfer

operator/dynamic Laplacian, LAVD, fuzzy clustering, and

spectral clustering provide detailed coherence structure

boundaries in an automated fashion. Automated procedures

naturally require numerical control parameters, as opposed to

simple diagnostic tools, which are only evaluated visually and

hence do not deliver specific structure boundaries.

To carry out the computations, one inevitably must

make a choice for the parameters listed in Table II. Given

the large number of methods we consider, including the

TABLE I. Comparison of the minimum number of particles required by each

method to construct a Lagrangian field with the resolution nx� ny. The number

Ns is the number of sample points placed in each grid box for the transfer opera-

tor method.

Method # particles

Trajectory length, trajectory complexity, LAVD,

fuzzy C-means clustering, spectral clustering

nx� ny

FTLE, mesochronic, shape coherence,

dynamic Laplacian, geodesic

4� nx� ny

FSLE ð4þ 1Þ � nx � ny

Probabilistic transfer operator, hierarchical

coherent pairs

Ns� nx� ny
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choice of the free parameters in the comparisons will be a

cumbersome task. We therefore rely on our expertise and

experience to choose a reasonable set of parameters for each

method with the intention that (i) The choice of parameter(s)

results in the most favorable outcome for the corresponding

method and (ii) The outcome is robust, i.e., small variations

in the parameters do not lead to drastic changes in the

outcome.

Finally, a few words on how we will assess the efficacy

of the methods in our comparison. If advection of various

predictions in a given flow region confirms sustained mate-

rial coherence for these predicted material structures, then

we consider the very presence of a structure in that region as

the established ground truth. (The geometric details of the

predicted structure may vary from one method to the other.)

Any method that fails to predict a structure in that same

flow domain will then be deemed to yield a false negative in

that domain. Likewise, if a method predicts a structure in a

given region and our advection studies disprove the pre-

dicted coherence of this material domain under advection,

then we consider a case of a false positive established for

that method. Different methods seek to capture different

aspects of coherence, but we only deem their efforts success-

ful if they produce structures that remain arguably coherent

under observations. Observed material coherence requires a

lack of extensive folding and/or filamentation for the mate-

rial structure.

A. Quasi-periodically perturbed Bickley jet

An idealized model for an eastward zonal jet in geo-

physical fluid dynamics is the Bickley jet,25,77 comprising a

steady background flow and a time-dependent perturbation.

The time-dependent Hamiltonian (stream function) for this

model is given by

wðx; y; tÞ ¼ w0ðyÞ þ w1ðx; y; tÞ; (27)

where

w0 yð Þ ¼ �ULtanh
y

L


 �
(28)

is the steady background flow and

w1 x; y; tð Þ ¼ ULsech2 y

L


 �
Re

X3

n¼1

fn tð Þexp iknxð Þ
" #

(29)

is the perturbation. The constants U and L are characteristic

velocity and length scales, with values adopted from

Ref. 25 as

TABLE II. Comparison of the minimum number of parameters required by each method to construct a Lagrangian field with the resolution m� n over the

time interval [t0, t1]. Here, we ignore trivial parameters such as the ODE solver tolerance conditions, which are required by all methods for advecting particles.

Moreover, some parameters are specified as optional since they are not strictly required for implementing a method.

Method # parameters Description

FTLE 0–1 (Optional) auxiliary grid space to increase the accuracy

of finite differencing68

FSLE 2 Initial separation distance d0

Separation factor r

Mesochronic 0–1 (Optional) auxiliary grid space

Trajectory length 0–1 (Optional) number Nt of sampled points along each trajectory

Trajectory complexity 2 Number Nt of sampled points along each trajectory

Vector specifying a range of spatial scales s

Shape coherent 0–1 (Optional) auxiliary grid space

Probabilistic transfer

operator/dynamic Laplacian

1 Number of sample points Ns for initial boxes Bi

Hierarchical coherent pairs 2 Number of sample points Ns for initial boxes Bi

Threshold on a relative improvement of reference measure of probability l
Fuzzy C-means clustering 4 Number Nt of sampled points along each trajectory

Number K of clusters needs to be extracted

Fuzzifier parameter m

Minimum threshold on the maximum membership

value a trajectory carrying in order to be considered coherent

Spectral clustering 1–2 (Optional) number Nt of sampled points along each trajectory

Graph sparsification radius �

Geodesic 6–7 (Optional) auxiliary grid space

Minimum distance threshold between admissible singularities69

Radius of circular neighborhood around each singularity to determine its type69

Minimum distance threshold between a wedge pair69

Length for the Poincar�e section

Number of initial conditions on each Poincar�e section for which g6
k ðx0Þ will be computed

Range of stretching parameters k needs to be searched for identifying closed orbits

LAVD 2–3 (Optional) auxiliary grid space for computing vorticity along trajectories,

assuming the direct measure of vorticity is not available

Arclength threshold lmin for discarding small-sized vortex boundaries

Convexity deficiency threshold dmin for relaxing the strict convexity requirement
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U ¼ 62:66 ms�1; L ¼ 1770 km; kn ¼ 2n=r0: (30)

Here, r0 ¼ 6371 km is the mean radius of the earth. For

fnðtÞ ¼ �n expð�ikncntÞ, the time-dependent part of the

Hamiltonian consists of three Rossby waves with wave-numbers

kn travelling at speeds cn. The amplitude of each Rossby wave is

determined by the parameters �n. In line with Ref. 25, we take

fnðtÞ ¼ �n expð�ikncntÞ, with constant amplitudes �1 ¼ 0:075;
�2 ¼ 0:4; �3 ¼ 0:3 and speeds c3 ¼ 0:461U; c2 ¼ 0:205U; c1

¼ c3 þ ðð
ffiffiffiffiffiffiffi
ð5Þ

p
� 1Þ=2Þðk2=k1Þðc2 � c3Þ. The time interval of

interest is t 2 ½0; 11� day.

We generate 5� 105 trajectories from a grid of initial

conditions in the domain ½0; 20� � ½�3; 3�. For the FTLE,

mesochronic analysis, shape coherence, and geodesic LCS

methods, this means using a grid of 500� 250 grid points

with 4 auxiliary points at each grid point for finite-

differencing that approximates the gradient of the flow map.

FSLE similarly requires 4 auxiliary points in addition to the

main grid points to measure the minimal separation time s
between the auxiliary points and the main grid. In contrast,

the arclength function, trajectory complexity, fuzzy C-means

clustering, spectral clustering, and LAVD methods are com-

puted on a 1000� 500 grid to ensure that the same number

of points is used in the comparison. We compute the transfer

operator and its hierarchical version using a partition of

250� 125 boxes, with 16 particles per box. We show the

results for all methods in Figure 2.

The majority of diagnostic scalar fields in Figure 2 indi-

cate the presence of six vortices. Out of those offering more

specific definitions for coherent structure boundaries, how-

ever, the mesochronic analysis, the shape coherence, the

transfer operator, and the geodesic method miss some or all

of the vortices. Below, we discuss these exceptions in more

detail.

Figure 2(c) shows the mesochronic partitioning of the

domain into three different regions: mesohyperbolic without

rotation (blue), mesoelliptic (green) and mesohyperbolic

with rotation (red). Following the criterion proposed by

Mezić,36 we seek coherent vortex regions as nested sequen-

ces of alternating mesoelliptic and mesohyperbolic annuli

with smooth boundaries (i.e., no saddle-type critical points

of the mesochronic plot should be embedded in the boundary

of at least three annuli of different colors). Examining Fig. 3,

we observe saddle-type critical points for the mesochronic

field in all the vortex regions, resulting in a lack of smooth

annular region boundaries. Hence, when precisely imple-

mented, the mesochronic analysis put forward in Refs. 34

and 36 does not indicate any coherent vortex in this example,

even though the topology of mesochronic contours gives a

good general indication of the vortical regions identified by

objective methods. The mesochronic plot also fails to iden-

tify the hyperbolic and parabolic LCSs identified by other

diagnostics, such as the FTLE field.

Figure 2(f) shows candidate regions (red) where shape

coherent sets may exist at the initial time t0¼ 0. In these regions,

the splitting angle between the dominant eigenvectors of the

forward-time and the backward-time Cauchy–Green strain ten-

sor is smaller than 5.7�. As mentioned earlier, these candidate

regions are supposed to encompass vortex boundaries that have

significant shape coherence over the time interval [t0, t1] of

interest. In Figure 2(f), however, all candidate regions are of spi-

ral shapes, and hence cannot contain closed curves encircling

FIG. 2. Comparison of Lagrangian methods on the quasiperiodic Bickley jet example (forward-time calculation only).

053104-12 Hadjighasem et al. Chaos 27, 053104 (2017)



the candidate regions. Consequently, the shape coherence

method captures none of the coherent vortices for the Bickley

jet, given that even the weakened version of the underlying cri-

terion provides domains that cannot contain closed boundaries

for these vortices.

Figure 2(g) shows the two coherent sets identified by the

transfer operator method in this example. These two sets are

precisely the upper and lower parts of the flow domain sepa-

rated by the core of the jet. The jet core is identified very

sharply, but the method misses the coherent vortices identi-

fied by most other methods. Higher singular vectors of the

transfer operator do indicate the presence of all these vorti-

ces, even if the actual boundaries of these vortices will

depend on what thresholding one uses to extract structures

from the eigenfunctions. It is a priori unclear, however, how

many singular vectors one needs to consider to obtain an

indication of all vortices in the problem (but see below for

more details on how to make the exploration of singular vec-

tors systematic).

Figure 2(h) provides a successive partitioning of the

coherent sets obtained from the hierarchical transfer operator

method into further coherent sets. At the fifth level of hierar-

chy (n¼ 5), the method captures the three most coherent vor-

tices in the problem. These vortices will be further

partitioned under subsequent steps in the hierarchical con-

struction, unless one has a sense of the ground truth and

hence knows when to stop. The increased hierarchy also

dilutes the sharpness of the jet core identified by the transfer

operator method. A steadily growing number of patches

appear that are hard to justify physically in a perfectly homo-

geneous shear jet.

Figure 2(i) shows the results from fuzzy clustering

(K¼ 6, m¼ 1.25). The method gives a good general sense

for all coherent vortices, but indicates no well-defined coher-

ent vortex core with a closed boundary. Instead, convoluted

boundaries are detected for all vortical regions, suggesting a

lack of regular, convex domains that stay tightly packed

under advection. The sharp jet core detected by the transfer

operator method is also absent in these results. The detected

structures remain convoluted under advection in Figure 4(c)

(Multimedia view), except for their subsets contained in

coherent vortices signaled by other methods.

Figure 2(j) shows that the spectral clustering method

consistently detects all vortices involved, improving on the

estimates on their sizes given by other method. All these

Lagrangian vortices do remain coherent, as confirmed by

their advection in Figure 4(d) (Multimedia view). At the

same time, the method gives no indication of the coherent

meandering jet in the dominant eigenvectors u1;…; u6 of the

graph Laplacian L. The seventh eigenvector u7 does reveal

the meandering jet in the flow (see Figure 5), but there is no

a priori indication from the spectrum that it should. The

FIG. 3. Mesochronic plot and its contours at the initial time t0¼ 0 for the

quasiperiodic Bickley jet.

FIG. 4. Advected images of Lagrangian coherent structures at the final time t1¼ 11 day for six different methods: (a) Probabilistic transfer operator, (b)

Hierarchical transfer operator, (c) Fuzzy clustering, (d) spectral clustering, (e) geodesic, and (f) LAVD. See also Figures 6 (right) and 8(b) for the transfer oper-

ator. Plots (a) and (b) have lower resolution because the total number of trajectories used in all computations was selected equal for a fair comparison.

(Multimedia view) [URL: http://dx.doi.org/10.1063/1.4982720.1] [URL: http://dx.doi.org/10.1063/1.4982720.2] [URL: http://dx.doi.org/10.1063/

1.4982720.3][URL: http://dx.doi.org/10.1063/1.4982720.4] [URL: http://dx.doi.org/10.1063/1.4982720.5] [URL: http://dx.doi.org/10.1063/1.4982720.6]
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reason is that the jet particles separate from each other due to

shear, which creates notably weaker within-class-similarity

for the jet than for the vortices.

Figure 2(k) shows the result for the geodesic LCS analy-

sis, where elliptic LCSs (material vortices), a parabolic LCS

(material jet core), and repelling hyperbolic LCSs (stable

manifolds) are shown in green, blue, and red, respectively.

In this example, the geodesic method identifies that only

three out of six vortical regions as coherent. Indeed, as seen

in Figure 4(e) (Multimedia view), only three material vortex

cores with no filamentation can be found under advection to

the final time t1¼ 11 day. (As seen in Figure 2, these three

vortices also happen to be the ones most clearly identified by

the hierarchical transfer operator method.) That said, Figure

4(d) (Multimedia view) and Figure 4(f) (Multimedia view)

show that the actual number of arguably coherent material

vortices is six, which indicates that the variational principle

behind the geodesic method is too restrictive for some of the

vortices of the Bickley jet flow.

Figure 2(l) shows that the LAVD method captures all

vortices accurately and the detected structures only show

tangential filamentation under advection (cf. Figure 4(f)

(Multimedia view)), as they should by construction. At the

same time, the LAVD method is unable to detect the

intended main feature of this model flow, the meandering jet

in the middle. More generally, the LAVD method is not

designed to detect hyperbolic or parabolic LCSs.

As for jet identification, we observe that most methods

offer some indication of the central jet, except for the shape

coherence, fuzzy clustering, spectral clustering, and LAVD

methods. The majority of methods, however, do not offer a

systematic approach to extracting the jet core or jet bound-

aries. The only exceptions are the FTLE, geodesic, and the

transfer operator methods that give a sharp boundary for the

jet core (see Figures 2(k), 2(g), and 2(h)).

On this example, we also illustrate how a consideration

of the higher singular vectors of the transfer operator yields

additional insight into the structure of the two main coherent

sets revealed by its second singular vector in Figure 2(g).

The initial domain X ¼ ½0; 20� � ½�2:5; 2:5� (with left and

right edges identified) is gridded into 125 000 identical

squares (250 grid boxes in the x-direction and 125 grid boxes

in the y-direction). We use 16 uniformly distributed sample

points per grid box and compute Lagrangian trajectories,

recording the terminal points after time t1¼ 24 days. The

image domain Y¼ T(X) is gridded into squares of the same

size, and is covered by 132 131 grid boxes. The grid-to-grid

transition matrix P (see Ref. 47 for details) is therefore a

row-stochastic 132 131� 125 000 rectangular matrix. The

leading singular vectors uk (resp. vk), k ¼ 2;…; 6 of the

transfer operator are shown in the left (resp. right) columns

of Figure 6. The top row of Figure 6 shows a clear separation

of the upper and lower parts of the flow domain.

We threshold the vectors u2, v2 according to the algo-

rithm proposed in Ref. 47 by letting c 2 f1;…; 12 500g rep-

resent a sorted box index. We then plot the coherence ratio

qðAc; ~AcÞ vs. c in Figure 7 (left), where Ac, ~Ac are super/sub-

level sets of u2, v2 (see Algorithm 1 in Ref. 47 for details). In

Figure 7, the blue curve indicates grid sets sorted in the

descending value of u2 from the maximum of u2, while the

FIG. 5. The seventh generalized eigenvector of the graph Laplacian L obtained

from the spectral clustering analysis for the quasiperiodic Bickley jet.

FIG. 6. The first five nontrivial singular

vectors of the transfer operator for the

Bickley jet example. Left column:

Vectors u2, u3, u4, u5, and u6 (top to bot-

tom). Right column: Vectors v2, v3, v4,

v5, and v6 (top to bottom). Various

finite-time coherent sets are highlighted

at the initial time (left column) and final

time (right column).
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red curve indicates grid sets sorted in the ascending value of

u2 from the minimum of u2; the two curves meet where the

mass of the partition sets are both equal to 1/2. The maxi-

mum value of qðAc; ~AcÞ is indicated by the vertical arrow

and the black asterisk. The resulting spatial partition is the

pale yellow/pale orange separation shown in Figure 8.

The vectors uk; vk; k ¼ 3;…; 5 in Figure 6 (second and

lower rows) highlight other smaller features. In order to

extract these smaller features, there are two main approaches.

First, one could restrict the domain to a smaller domain, a lit-

tle larger than twice the size of the highlighted feature (see,

e.g., the experiments in the atmosphere47 and the ocean78,79).

One then recomputes u2 and v2 and because other coherent

features have been eliminated from the domain, these domi-

nant nontrivial vectors capture the required feature. Note that

this procedure is different to Ref. 58.

Second, one could retain the original domain and use

the vectors uk; vk; k ¼ 2;…; 5 directly. Various techniques

have been devised to extract information from multiple vec-

tors (see, e.g., the references in Sec. 3.1 of Ref. 45). One

could, for instance, fuzzy cluster the embedded vectors uk.
44

Here, we take a vector by vector approach. In the present

example, there are clear features highlighted through the

extreme negative or positive values of uk; vk; k ¼ 3;…; 5. In

general, given a particular sufficiently coherent spatial fea-

ture, one should always be able to find a vector which

highlights that feature through an extreme negative or posi-

tive value (for example, see Fig. 4 of Ref. 80 for computa-

tions on the global ocean). A simple approach is to look for

the first local maxima of qðAc; ~AcÞ in the thresholding figures

computed from uk; vk; k ¼ 3;…; 5, starting at either the nega-

tive or positive end of the vector that corresponds to the spa-

tial feature one wishes to extract.

For example, the second row of Figure 6 highlights a

small red feature, which corresponds to extreme positive

values of u3, v3. Thus, we threshold starting from the max-

ima of u3, v3 and descend, looking for the first local maxi-

mum of qðAc; ~AcÞ. Figure 7 (right) shows the full plot of

qðAc; ~AcÞ vs. c, with the first local maximum indicated with

a vertical black arrow. The corresponding spatial feature is

shown in the lightest red in Figure 8. This approach is

repeated for all remaining highlighted features in Figure 6.

The extracted finite-time coherent sets are displayed in

Figure 8.

B. Two-dimensional turbulence

As our second example, we consider a flow without any

temporal recurrence. We solve the forced Navier–Stokes

equation

@tvþ v 	 rv ¼ �rpþ �Dvþ f ; r 	 v ¼ 0; (31)

FIG. 7. (a) Plot of qðAc; ~AcÞ vs. c based on u2, v2. The global maximum of qðAc; ~AcÞ is indicated with a vertical arrow and black asterisk. This corresponds to

the upper/lower separation shown in pale yellow/pale orange in Figure 8. (b) Plot of qðAc; ~AcÞ vs. c based on u3, v3. The first local maximum of qðAc; ~AcÞ, start-

ing from the largest value of u3 and descending, is indicated with a vertical arrow. This corresponds to the red set in the lower right of the upper panel of

Figure 8, and its image in the lower left of the lower panel of Figure 8.

FIG. 8. (a) The finite-time coherent sets extracted from the singular vectors uk, vk, k ¼ 2;…; 6 for the Bickley jet example at the initial time. (b) Advected

image of the coherent sets at the final time.
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for a two-dimensional velocity field v(x, t) with x ¼ ðx1; x2Þ
2 U ¼ ½0; 2p� � ½0; 2p�. We use a pseudo-spectral code with

viscosity � ¼ 10�5 on a 512� 512 grid, as described in Ref.

75. A random-in-phase velocity field evolves in the absence

of forcing (f¼ 0) until the flow is fully developed. At that

point, a random-in-phase forcing is applied. For the purposes

of the following Lagrangian analysis, we identify this

instance with the initial time t¼ 0. The finite time interval of

interest is then t 2 ½0; 50�.
Figure 9 shows the result from various Lagrangian

methods applied to the resulting finite-time dynamical sys-

tem _x ¼ vðx; tÞ. We use the auxiliary gird approach with the

distance q ¼ 10�3 to construct the FTLE, FSLE, meso-

chronic, and shape coherence diagnostic fields. The same

auxiliary distance is used to compute the Cauchy–Green

strain tensor as well as the vorticity for the geodesic and

LAVD methods, respectively.

Most plots in Figure 9 indicate several vortex-type struc-

tures, except for the shape coherence and transfer operator

methods. While the boundaries of the large-scale coherent

sets identified by the latter method indeed do not grow

significantly under the finite-time flow, these sets are unre-

lated to the vortices that are generally agreed to be the coher-

ent structures of two-dimensional turbulence. These vortices

only appear in some of the higher singular vectors of the

transfer operator, similarly to Figures 6 and 8. Just as in the

case of the Bickley jet, however, there is no clear indication

from the spectrum of singular values for the number of sin-

gular vectors to be considered to recover all vortices.

The hierarchical application of the transfer operator

method58 also signals vortex-like structures but these no lon-

ger stand out of the many additional patches it labels as

coherent sets. Most of these patches appear to be examples

of coincidental, rather than physical, coherence with respect

to the coherence metric imposed by the method. An addi-

tional issue with the hierarchical transfer operator method58

is its convergence on this example. The method sets a thresh-

old on the relative improvement of the coherence with

respect to the reference probability measure l, which needs

to be computed and satisfied over consecutive refinements of

coherent pairs. However, at each iteration, l depends on the

initial numerical diffusion imposed by the box covering. As

FIG. 9. Comparison of Lagrangian methods on the two-dimensional turbulence simulation example.
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a consequence, identifying similar coherent sets under vari-

ous box covering resolutions requires different threshold val-

ues. Figure 10 shows the hierarchical coherent sets obtained

with a fixed termination threshold for three different box

covering resolutions. Figure 10 indicates no overall conver-

gence, except in some minor details.

Figure 9(f) shows candidate regions (red) where shape

coherent sets may exist at the initial time t0¼ 0. In these

regions, the angle between stable and unstable foliations is

smaller than 5.7�, and hence, all vortex boundaries should be

fully contained in these regions. Inspection of Figure 9(f),

however, reveals that these candidate regions are spirals, and

hence, no closed vortex boundaries satisfying the shape

coherence requirement exist. This is unsurprising as the

underlying coherence principle is only arguable for flows

whose behavior is the same in forward and backward time,

which is not the case for the present example.

Figure 9(j) shows the coherent sets detected by the spec-

tral clustering method at the initial time. These coherent sets

include the vortices captured by the Geodesic and LAVD

methods, as well as some additional structures. Figure 11(d)

(Multimedia view) illustrates that the advected image of

these additional coherent sets indeed shows limited disper-

sion at the final time t1¼ 50. As in the case of the hierarchi-

cal transfer operator method, some of these moderately

dispersive sets are of an irregular, physically unexpected

shape. A systematic comparison with the results of the FTLE

analysis (see Figure 9(a)) shows that all these irregularly

shaped regions are valleys of low FTLE values among FTLE

ridges. Therefore, beyond coherent vortices, spectral cluster-

ing also identifies domains that are trapped between finite-

time stable manifolds of saddle-type (hyperbolic) trajecto-

ries. This feature may make spectral clustering the method

of choice in applications with a well-defined time scale of

interest (e.g., fixed-time forecasting problems). At the same

time, there is no a priori constraint in a turbulent flow that

keeps stable manifolds of different hyperbolic trajectories

close to each other. For this reason, several of the irregularly

shaped sets identified from spectral clustering may change

substantially under changes in the extraction interval.

Figure 9(i) shows that fuzzy clustering (with m¼ 1.5

and K¼ 20) also identifies both regularly and irregularly

shaped coherent sets. Three of these clearly indicate coherent

vortices, containing the coherent vortices indicated by other

methods in these locations. Since these larger vortices pre-

dicted by fuzzy clustering only show tangential filamentation

(cf. Figure 11(c) (Multimedia view)), this method gives the

sharpest, least conservative assessment of coherence for

these vortices relative to the results returned by other meth-

ods. That said, the method also completely misses the

remaining two, highly coherent larger vortices. Furthermore,

the irregularly shaped domains identified by fuzzy clustering

lose their coherence by the end time of the extraction inter-

val, showing stretching and filamentation in Figure 11(c)

(Multimedia view). The total number of extracted sets (the

number K of clusters) is an input parameter for the method,

so the number of inaccurate coherence predictions is influ-

enced by choices made by the user.

Figure 9(k) shows the geodesic Lagrangian vortex

boundaries (green) as well as the repelling hyperbolic LCSs

(red) at the initial time t0¼ 0. Coherent Lagrangian vortex

boundaries (black) are defined as the outermost members of

nested elliptic LCS families. In Figure 11(e) (Multimedia

view), we confirm the sustained coherence of the geodesic

vortex boundaries by advecting them to the final time

t1¼ 50. At the same time, other methods (e.g., the LAVD

method discussed below) reveal additional vortices that

should also be considered coherent based on their advection

properties, as they only exhibit limited tangential filamenta-

tion. The geodesic method, is therefore, too conservative to

detect these smaller vortices.

Figure 9(l) shows the Lagrangian vortex boundaries

extracted using the LAVD method at the initial time t0¼ 0.

In this computation, we have set the minimum arc-length,

lmin¼ 0.3 and convexity deficiency bound dmax¼ 0.005. In

Figure 11(f) (Multimedia view), we confirm the Lagrangian

rotational coherence of these vortex boundaries by advecting

them to the final time t1¼ 50. As guaranteed by the deriva-

tion of the LAVD method, the vortex boundaries display

only tangential filamentation. With this relaxed definition of

coherence, the LAVD approach identifies additional smaller

vortices missed by the geodesic LCS method (cf. Figure

9(k)). At the same time, the LAVD method only targets vor-

tices, missing other patches of trajectories that remain

FIG. 10. Hierarchical transfer operator method with 128 (left), 256 (middle), and 512 (right) boxes. For all cases: Each box contains 16 points; 8 levels of hier-

archy were used; and l-tolerance is set to 5� 10�2.
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closely packed over the same time interval (see, e.g., the dis-

cussion on spectral clustering above).

Beyond showing the results of various methods, we also

use this example to investigate whether contours of diagnos-

tic tools such as the trajectory length function or meso-

chronic field can be used for the purpose of vortex boundary

detection. Specifically, we extract the contours of these two

diagnostic methods for two select vortex regions at initial

time t0¼ 0, and advect them to the final time t1¼ 50. In addi-

tion, we make a comparison with the geodesic vortex bound-

aries obtained for the same regions.

Figure 12 shows the advection of the level-curves of

the trajectory length function M50
0 around two select vorti-

ces. The level-curves closer to the vortex core remain

coherent for both vortices. A comparison with the geodesic

vortex boundary, however, shows that the contours of M50
0

underestimate the size of the upper vortex substantially. A

precise implementation of the mesochronic vortex criterion

of Ref. 36 shows again a lack of vortex-type structures in

the selected regions due to the presence of the saddle-type

critical points. In contrast, a visual inspection of the same

regions in Figure 9, without implementing the specific

vortex criterion of Ref. 36, does suggest coherent vortices

in all vortical regions identified by the geodesic and the

LAVD method. The actual boundaries of the vortices,

however, cannot be inferred based on such an inspection

(Fig. 13).

C. Wind field from Jupiter’s atmosphere

In our third example, we compare the twelve Lagrangian

structure detection methods on an unsteady velocity field

extracted from video footage of Jupiter’s atmosphere. The

video footage was acquired by the Cassini spacecraft, cover-

ing 24 Jovian days, ranging from October 31 to November 9

in year 2000. To reconstruct the velocity field, we used the

Advection Corrected Correlation Image Velocimetry

(ACCIV) method81 to obtain high-density, time-resolved

velocity vectors (cf. Ref. 76 for details). This is a characteristi-

cally finite-time problem: no further video footage and hence

no further time-resolved velocity data are available outside

the time interval analyzed here. Furthermore, the data were

acquired in a frame orbiting around Jupiter, and hence, the

frame-invariance of the results is a crucial requirement.

In this example, we use a total number of 1800� 1200

particles for all the methods. The spatial domain U in question

ranges from�61.6� W to �31.6� W in longitude and from

�8.9� S to � 28.9� S in latitude. We perform the computation

of gradient-based approaches, such as FTLE, FSLE, meso-

chronic, shape coherence, and geodesic LCS analysis, using

FIG. 11. Advected images of Lagrangian coherent structures at the final time t1¼ 50 for six different methods: (a) Probabilistic transfer operator, (b)

Hierarchical transfer operator, (c) fuzzy clustering, (d) spectral clustering, (e) geodesic, and (f) LAVD. Plots (a) and (b) have lower resolution because the total

number of trajectories used in all computations was selected equal for a fair comparison. (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4982720.7]

[URL: http://dx.doi.org/10.1063/1.4982720.8] [URL: http://dx.doi.org/10.1063/1.4982720.9] [URL: http://dx.doi.org/10.1063/1.4982720.10] [URL: http://

dx.doi.org/10.1063/1.4982720.11] [URL: http://dx.doi.org/10.1063/1.4982720.12]
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an auxiliary grid to ensure high-precision and numerical sta-

bility in the finite differencing. Specifically, an embedded grid

of resolution 900� 600 is used to construct the corresponding

scalar fields. In contrast, we use a uniform grid of

1800� 1200 for the gradient-free methods. As for the trans-

fer-operator-based approaches, we use a grid of 450� 300

boxes, with 16 uniformly sampled points per grid box. Here,

we use a variable-order Adams–Bashforth–Moulton solver

FIG. 12. M-function contours (black

curves) and the geodesic vortex bound-

ary (red curves) at the initial time t¼ 0

(left) and at the final time t¼ 50

(right).

FIG. 13. Contours of the mesochronic

scalar (black curves) and the geodesic

vortex boundary (red curves) at the ini-

tial time t¼ 0 (left) and at the final

time t¼ 50 (right).
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(ODE113 in MATLAB), with relative and absolute tolerances

of 10�6, for trajectory advection. We obtain the velocity field

at any given point by interpolating the velocity data set using

bilinear interpolation.

As seen in Figure 14, several methods that offer specific

structure boundary definitions signal a localized, vortex-type

coherent structure corresponding to the Great Red Spot

(GRS) of Jupiter. Exceptions to this rule are the transfer

operator, shape coherence, fuzzy clustering, and the meso-

chronic method. The 5th singular vector (not shown here) of

the transfer operator does give an indication of the GRS,

similarly to Figures 2 and 9. As in our pervious examples,

however, an inspection of the singular value spectrum of the

transfer operator does not a priori suggest a distinguished

role for the 5th singular vector.

As in our previous example, the hierarchical transfer

operator method also signals a localized vortex-like structure

(see Figure 14(h)). The precise implementation of the meso-

chronic vortex criterion of Ref. 36 provides again no coher-

ent vortex boundary due to the lack of a nested sequence of

FIG. 14. The output of all methods at initial time t0 for Jupiter’s wind-velocity field of Ref. 76.
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smooth closed contours. An intuitive visual inspection of the

mesochronic plots still suggests a vortical structure to the

extent that other heuristic diagnostics do (the FTLE, FSLE,

M-function, and trajectory complexity methods).

Spectral clustering, geodesic LCS detection, and the

LAVD method give very close results for the boundary of

the GRS in this example. This suggests that the core of the

Great Red Spot is a fairly well defined material vortex with

negligible material filamentation.

As for jet identification, most diagnostic methods in

Figure 14 give some indication of two jets passing north and

south of the GRS. However, since these methods give no

clear recipe for jet identification, we could not go beyond a

general visual assessment of the results. In contrast, the

transfer operator, the hierarchical transfer operator, and the

geodesic LCS methods suggest clear jet cores or jet bound-

aries. The ones signalled by the geodesic LCS method also

coincide with zonal jet cores observed visually in Jupiter’s

atmosphere.76

As in the earlier two examples, fuzzy clustering (with

m¼ 1.25 and K¼ 4) gives convoluted structure boundary can-

didates, some of which stretch out significantly under advec-

tion in Figure 15(c). The observed stretch in these boundaries

is unsurprising, given that they are transverse to known trans-

port barriers (shear jets) in the atmosphere of Jupiter.

Together with our earlier Bickley jet example, the present

example indicates a difficulty for fuzzy clustering to identify

vortical and jet-type structures when both are present.

In Figures 15(a)–15(c) (Multimedia view), we advect to

the final time t1¼ 24 the initial rectangular domain and the

partitioning of this domain into sets identified as coherent by

the probabilistic transfer operator, hierarchical transfer oper-

ator, and fuzzy clustering methods. A zoom-in of the

advected image of the single subset identified as coherent by

the spectral clustering, geodesic LCS, and LAVD methods is

shown in Figures 15(d)–15(f) (Multimedia view). As noted

above, coherent regions predicted by the transfer operator

and the transfer operator with hierarchy have common

boundaries that remain short by construction. At the same

time, the advected domain boundaries (which are beyond the

control of these methods) stretch substantially over the time

interval of advection. In contrast, all boundary components

of the regions identified by the fuzzy clustering as coherent

either are long at the initial time or stretch under advection,

defying expectations for coherence. Finally, all structure

boundaries predicted by the spectral clustering, geodesic

LCS, and LAVD methods stay coherent.

VI. ASSESSMENT

Based on our three benchmark examples and available

evidence in the literature, we now summarize the inferred

strengths and weaknesses of the twelve Lagrangian methods

compared here.

A. FTLE method

Strengths: Simple and objective algorithm; FTLE ridges

capture hyperbolic LCSs under additional mathematical con-

ditions (cf. Ref. 82); FTLE trenches tend to approximate jet

cores (but see Ref. 27 for exceptions).

FIG. 15. Advected images of Lagrangian coherent structures at the final time t1¼ 24 for six different methods: (a) Probabilistic transfer operator, (b) hierarchi-

cal transfer operator, (c) fuzzy clustering, (d) Spectral clustering, (e) geodesic, and (f) LAVD. Plots (a), (b), and (c) are constructed using the advected image

of the original rectangular domain of Figures 14(g), 14(h), and 14(i), respectively. In these plots, the box framing the plots (d)–(f) is shown in black for refer-

ence. (Multimedia view) [URL: http://dx.doi.org/10.1063/1.4982720.13] [URL: http://dx.doi.org/10.1063/1.4982720.14] [URL: http://dx.doi.org/10.1063/

1.4982720.15] [URL: http://dx.doi.org/10.1063/1.4982720.16] [URL: http://dx.doi.org/10.1063/1.4982720.17] [URL: http://dx.doi.org/10.1063/1.4982720.18]
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Weaknesses: No reliable detection of elliptic LCSs;

ridges connect locations of high stretching with those of high

shear, and hence also produce false positives for hyperbolic

LCS.

B. FSLE method

Strengths: Simple and objective algorithm; requires no a
priori time scale of integration; can be focused on a length

scale of interest; requires no differentiation of the flow map

with respect to initial conditions.

Weaknesses: Correspondence to actual hyperbolic LCS

is limited (cf. Ref. 33); no reliable detection of elliptic and

parabolic LCSs; highlights structures arising over different

time intervals; has unremovable jump discontinuities (cf.

Ref. 33).

C. Mesochronic analysis

Strengths: Simple algorithm; visual inspection often

reveals features generally consistent with material vortices

detected by objective methods.

Weaknesses: Nonobjective; unclear mathematical mean-

ing for non-periodic trajectories (cf. Section III C); no reli-

able detection of hyperbolic and parabolic LCS; elliptic and

hyperbolic classification of trajectories inconsistent with

classic notions of stability (cf. Section III C); precise imple-

mentation of additional vortex criterion of Ref. 36 eliminates

most visually inferred material vortex candidates.

D. Trajectory length method

Strengths: Simplest of all to implement; visual inspec-

tion often reveals features consistent with output of other

methods; requires no differentiation of the flow map with

respect to initial conditions.

Weaknesses: Nonobjective; a number of known counter-

examples in simple flows show inconsistencies with the

method (cf. Refs. 38 and 39); unclear definition of a coherent

structure.

E. Trajectory complexity method

Strengths: Simple and objective algorithm; underlying

principle is physically intuitive; topology is consistent for all

vortical features; requires no differentiation of the flow map

with respect to initial conditions.

Weaknesses: Delivers no clear structure boundaries;

lacks clear mathematical connection to coherence.

F. Shape coherence method

Strengths: Objective; intuitive for steady and time-

periodic flows.

Weaknesses: Assumes that stretching history is the same

in forward and backward time; as a consequence, misses

coherent structures in time-dependent flow data; no clear rec-

ipe for extracting closed structure boundaries.

G. Transfer operator/dynamic Laplacian method

Strengths: Objective method with an appealing mathe-

matical foundation; supported by rigorous estimates for

material coherence; applies in any dimensions; gives sharp

structure boundaries when a given flow region can be parti-

tioned into precisely two coherent sets (e.g., two sides of a

jet core-type barrier); higher-order eigenfunctions reveal fur-

ther coherent structures; can be applied to diffusive problems

as well (probabilistic transfer operator only); requires no dif-

ferentiation of the flow map with respect to initial conditions;

requires a small number of user inputs.

Weaknesses: Computationally expensive (this does not

apply to dynamic Laplacian method); does not generally

detect hyperbolic LCSs; first nontrivial singular vector will

always partition the domain into just two coherent sets; an a
priori unclear number of further singular vectors need to be

deployed and thresholded to recover coherent features

revealed by some other methods.

H. Hierarchical transfer operator method

Strengths: Objective method with an appealing mathe-

matical foundation; not limited to flows with two coherent

sets; incremental implementation possible until required

granularity is reached; no inspection of an a priori undeter-

mined number of higher eigenfunctions is required; requires

no differentiation of flow map with respect to initial condi-

tions; requires a small number of user inputs.

Weaknesses: Lack of overall convergence under increas-

ing hierarchy; the number of identified coherent subsets

increases endlessly even in regions that are clearly homoge-

neous; unphysical output tends to arise over a certain level of

granularity.

I. Fuzzy clustering of trajectories

Strengths: Simple implementation, appealing theoretical

foundation; objective method; requires no differentiation of

the flow map with respect to initial conditions.

Weaknesses: Most detected structures have convoluted

shapes that differ from known coherent structure boundaries;

some of the detected structures lose their coherence further

via stretching under advection; inability to detect hyperbolic

LCS and difficulty in detecting elliptic and parabolic LCSs

simultaneously; robustness of structures needs to be checked

over different parameters; number of coherent structures to

be located is an input parameter.

J. Spectral clustering of trajectories

Strengths: Objective method with an appealing mathe-

matical foundation; simple implementation; number of

coherent structures is output; requires no differentiation of

the flow map with respect to initial conditions; requires a

small number of user inputs; consistently finds open, low-

dispersion regions beyond elliptic LCSs.

Weaknesses: Requires a well-defined spectral gap; com-

putationally expensive for a large number of trajectories;

inability to detect hyperbolic and parabolic LCSs; also pro-

duces low-dispersion structures whose robustness is unlikely
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under variations in the extraction time; the size of the spec-

tral gap varies with the choice of the sparsification radius.

K. Geodesic LCS method

Strengths: Automated and objective detection of hyper-

bolic, elliptic and parabolic LCS; supported by exact varia-

tional principles; perfect lack of filamentation is guaranteed

for elliptic LCSs under advection.

Weaknesses: Computationally involved; detects only the

most coherent elliptic LCSs, misses those with non-

uniformly stretching boundaries; unlike all other methods

reviewed, it does not extend to three dimensions; automated

implementation in Ref. 32 requires a large number of numer-

ical parameters and requires a parameter-sensitive identifica-

tion of Cauchy–Green singularities (but see Ref. 70 for a

recent implementation eliminating all these issues).

L. LAVD method

Strengths: Automated, simple and objective algorithm;

low computational cost; requires no differentiation of the

flow map with respect to initial conditions; precise mathe-

matical relationship to material rotation; requires a small

number of user inputs.

Weaknesses: Inability to detect hyperbolic and parabolic

LCS; relies on derivatives of the velocity field; requires a

minimal spatial scale and a maximal convexity deficiency

parameter; assumes a large enough computational domain

for spatial mean vorticity to be representative.

VII. CONCLUSIONS

In addition to the specific evaluations we have given for

twelve coherent structure methods in the Sec. VI, we now

discuss some general aspects of Lagrangian coherence

detection.

We have found that the performance of randomly cho-

sen scalar fields compares favorably with that of the heuristic

Lagrangian diagnostic tools surveyed here. This is no coinci-

dence: the significance of LCSs is precisely that they leave

observable footprints in any generic scalar field advected by

the flow. Such footprints can clearly be observed in various

physical processes in the ocean, ranging from larval trans-

port3 and algal blooms83 to massive transport of salinity and

temperature via coherent structures.84 These imprints, how-

ever, reveal the consequence, rather than the root cause, of

observed material coherence in unsteady flows.15,85

Accordingly, the emergence of features in a heuristic diag-

nostic field for specific examples does not constitute a vali-

dation of the intuitive arguments used in constructing that

diagnostic.

As is generally accepted, the material deformation of a

fluid (or any continuum) cannot depend on the frame of the

observer.86 This implies that questions inherently linked to

material deformation (such as material coherence, material

transport, material mixing or lack thereof) should be express-

ible in terms of objective physical quantities. No matter how

straightforward this requirement might sound, several of the

Lagrangian diagnostic tools developed over the past few

years fail to satisfy it (see, e.g., the trajectory arclength and

the mesochronic approaches discussed in the present com-

parison). We believe that, just as all newly proposed consti-

tutive laws in continuum mechanics, newly proposed

Lagrangian (i.e., material) coherence principles and compu-

tational methods should be required to pass the requirement

of objectivity (see Ref. 13 for more arguments supporting

this requirement).

As a second requirement, we believe that a new

Lagrangian coherence detection method should have a spe-

cific quantitative statement on what a coherent structure is,

and how it can be extracted systematically. This would help

in moving beyond the current trend of visually inspecting

colorful pictures, a practice that is inherently subjective and

forgiving towards false positives and false negatives.

As a third requirement, we believe that a Lagrangian

coherence detection method should deliver on capturing at

least the majority of structures in truly aperiodic finite-time

data sets, such as the three benchmark flows treated in this

paper. This implies moving beyond the current practice of

illustrating a proposed approach on the simplest two-

dimensional, bounded and time-periodic flows (typically a

time-periodic double gyre model). Trajectories in such flows

can be run forever in forward and backward times, display-

ing the characteristically recurrent, and highly idealized, pat-

terns of time-periodic flows. Several diagnostics proposed

for aperiodic flow data, in fact, crucially depend on assuming

such recurrence to justify implicit assumptions in their deri-

vations (see, e.g., the shape coherence method and the meso-

chronic analysis reviewed here).

As a fourth requirement, the actual material coherence

of structures delivered by any method at the initial time t0
should be confirmed by simple material advection. The

advected image of a coherent set should then satisfy the

exact coherence principle laid down at the derivation of the

underlying method. It is this last step that may hold even a

well-argued, mathematical method to task by exposing the

weakness of its underlying coherence principle.

If any of the above four requirements fails, it appears to

make little sense to propose a method for exploring a priori
unknown material coherent structures in complex unsteady

flows. This is especially true when a Lagrangian method is

intended for now-casting, short-term forecasting, flow con-

trol, or real-time decision making in sensitive situations.
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34I. Mezić, S. Loire, V. A. Fonoberov, and P. Hogan, “A new mixing diag-

nostic and gulf oil spill movement,” Science 330, 486–489 (2010).
35I. S. Liu, “On the transformation property of the deformation gradient

under a change of frame,” J. Elasticity 71, 73–80 (2003).
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