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1. CLS Detection
The two methods used to detect CLSs are described here pre-
ceded by their mathematical setup.

1.1. Setup. Let v(x , t) be a 2D velocity field, where x denotes
position on the plane and t is time. Fluid particle motion then
obeys the differential equation

ẋ = v(x , t). [S1]

The flow map

F t
t0(x0) := x (t ; x0, t0) [S2]

takes particle positions at time t0 to their positions at a later
time t .

1.2. The LAVD Method. Haller et al. (1) seek coherent Lagrangian
eddies boundaries as locally maximal closed material curves
along which all fluid particles experience the same bulk rotation
relative to the mean rotation of the total fluid mass of interest.
This relative bulk material rotation turns out to equal twice the
LAVD field, defined as

LAVDt
t0(x0) :=

∫ t

t0

|ω(F τt0(x0), τ)− ω̄(τ)| dτ, [S3]

where ω(x , t) is the vorticity and ω̄(t) is its instantaneous average
over the region U (t) containing the fluid.

For an infinitesimal fluid region starting from x0, LAVDt
t0(x0)

is an objective and dynamically consistent measure of bulk mate-
rial rotation relative to the spatial mean rotation of the full
fluid mass U (t). Specifically, LAVDt

t0(x0) is twice the intrinsic
dynamic rotation angle generated by the relative rotation tensor
Φt

t0(x0), which itself is obtained from the unique, dynamically
consistent decomposition of the deformation gradient (2):

DF t
t0(x0) = Φt

t0(x0)Θt
t0(x0)M t

t0(x0). [S4]

Here Θt
t0(x0) is the deformation gradient of a pure rigid-body

rotation, and M t
t0(x0) the deformation gradient of a unique,

purely straining flow; cf. ref. 2 for details.
Over the finite time interval [t0, t1], Haller et al. (1) define a

rotationally coherent Lagrangian eddy as an evolving fluid region
R(t) such thatR(t0) is filled with a nested family of level curves
of LAVDt1

t0
(x0) with outward-increasing values. The boundary

B(t) of R(t) is a material loop such that B(t0) is the outermost
level curve of LAVDt1

t0
(x0) inR(t0).

We note that rotationally coherent Lagrangian eddies are
allowed to experience filamentation. However, if the bound-
ary is initially convex, any filamented piece is guaranteed to
rotate together with the rotationally coherent Lagrangian struc-
ture without global breakaway.

The numerical implementation of the LAVD method is quite
simple. It involves integrating Eq. S1 from some dense grid of
initial fluid particle positions, then evaluating the vorticity along
these fluid trajectories, and finally computing the LAVD field
in Eq. S3. Once this computation is carried out, one can iden-
tify coherent Lagrangian eddy boundaries as outermost convex
level curves of the LAVD field encircling its local maxima. As
a practical way to deduce the convexity of these curves, one
requires their convexity deficiency to be less than a sufficiently
small bound. Convexity deficiency of a closed curve on a plane is
defined as the ratio of the area between the curve and its convex
hull to the area enclosed by the curve.

We have carried out all integrations using a step-adapting
fourth/fifth-order Runge–Kutta method with interpolations done
with a cubic method. The width of the initial position grid was
set to 0.1 km, which is about 100 times smaller than the small-
est spatial scale that the NCOM model can effectively resolve.
Using smaller widths makes computations only more expensive,
while using larger widths typically results in coarser eddy bound-
aries which tend to filament too quickly. The vorticity was com-
puted from the model’s multiscale velocity output using central
differences. No smoothing was applied on the vorticity as this was
found to produce smoother eddy boundaries that also tended to
filament quickly. The convexity deficiency tolerances used were
set as small as the multiscale data allowed us. For the mesoscale
eddy boundary extraction, we were able to set the tolerance to
about 0.25. No boundary was found using a larger value, while
smaller values resulted in boundaries that enclosed areas with
mean radii much smaller than the scale of interest. For the sub-
mesoscale extractions, the tolerance was possible to decrease to
0.025. Similarly, we could not find any boundaries using larger
values, and smaller values produced too small eddies.

1.3. The Spectral Clustering Method. Hadjighasem et al. (3) seek
coherent Lagrangian eddies as distinguished sets of fluid parti-
cles that maintain short distances among themselves relative to
their distances to particles in other regions over the finite time
interval [t0, t1].

To implement the spectral clustering approach, the first step
is to construct a trajectory array X∈ Rn×m×d whose rows
(Xi)i=1,...,n contain positions of n Lagrangian particles over
m discrete time intervals in d -dimensional space; that is, Xi =
{xi(t0), . . . , xi(t1)}. The maximum dynamic distance rij between
particle trajectories Xi and Xj is then defined as

rij = max
t
|xi(t)− xj (t)| , [S5]

where |·| denotes the spatial Euclidean norm.
The second step is to construct a similarity graph G = (V ,E ,

W ), which is defined by the set of its nodes V = {v1, · · · , vn},
the set of its edges E ⊆ V × V connecting nodes, and a sim-
ilarity matrix W∈ Rn×n which associates weights to the edge
set. In this context, each graph node vi represents a fluid par-
ticle, and each element of the similarity matrix wij equals the
inverse of maximum dynamic distance between the particle i
and particle j . However, only those elements from the similar-
ity matrix wij whose values exceed a specified threshold ε are
retained. All other wij entries are otherwise set to zero and
hence require no storage. The reason for sparsifying the similar-
ity matrix is that, when the dynamic distance between the particle
i and particle j is too large, then the chance that these two par-
ticles can be in the same coherent region is too low. Hence, the
edge between the corresponding graph nodes vi and vj can be
safely ignored, and the corresponding edge weight wij can be set
to zero.

With the similarity weights at hand, the degree matrix D is
defined as a diagonal matrix, which contains the row/column
sums of the adjacency matrix along the diagonal, as

dij =


n∑

j=1

wij , i = j

0, i 6= j .
[S6]

With the notation developed so far, the problem of identifying k
coherent fluid regions can now be posed in terms of a normalized
graph cut problem: Given a similarity graph G = (V ,E ,W ),
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partition the graph nodes V into k clusters A1,A2, · · · ,Ak such
that the following (dis)similarity conditions hold. First, nodes
within the same cluster have large edge weights between them-
selves; i.e., particles in a coherent fluid region have mutually
short dynamical distances. Second, nodes in different clusters
have small edge weights between themselves. In other words,
particles in a coherent fluid region have long dynamic distances
from the rest of the particles, particularly those located in the
mixing region (i.e., noise cluster) that fills the space between the
coherent fluid regions.

The normalized cut that implements the above (dis)similarity
conditions can now be formulated in terms of a minimization
problem as

Ncut(Ai , · · · ,Ak ) =
1

2

k∑
i=1

cut(Ai , Āi)

vol(Ai)
, [S7]

cut(A1, · · · ,Ak ) =
1

2

k∑
i=1

W (Ai , Āi), [S8]

vol(Ai) =
∑
i∈Ai

deg(vi), [S9]

where Ā denotes the complement of set A in V . The minimiza-
tion of the normalized cut exactly is an NP-complete problem,
even for k = 2 clusters (64). The optimal relax solutions of the
Ncut problem, however, can be approximated from the first k
eigenvectors u1, · · · , uk of the following eigensystem (4):

(D −W )u = λDu. [S10]

Here, k equals the number of eigenvalues that precede the
largest gap in the eigenvalue sequence. The first k generalized
eigenvectors u1, · · · , uk provide a reduced space in which k
coherent fluid regions can be extracted using a simple K-means
algorithm (5).

If a spectral gap does not exist in a given flow, then no coher-
ent structures can be identified based on the trajectory-distance
metric. This outcome, however, appears to be atypical in real-life
unsteady flows. Indeed, on several challenging fluid flow exam-
ples discussed by Hadjighasem et al. (6), spectral clustering with
the spectral gap condition has consistently outperformed other
clustering-type methods, such as the transfer operator and C-
means clustering approaches reviewed by Hadjighasem et al.
(6). As with any open condition formulated for trajectories, pro-
nounced spectral gaps remain robust under small perturbations
and uncertainties due to the continuous dependence of trajec-
tories on parameters over finite time intervals. The behavior of
spectral gaps under larger perturbations is generally unknown.

2. The NCOM Simulation
The NCOM simulation uses assimilation and nowcast analy-
ses from Navy Coupled Ocean Data Assimilation (NCODA)
(7). Forecasts are generated by systems linking NCODA with
regional implementations (8) of NCOM (9). The model has
1-km horizontal resolution and was initiated on May 15,
2012, from the then operational global ocean model Global
Ocean Forecast System (GOFS) 2.6 (10). Daily boundary
conditions are received from the current operational GOFS
using the Hybrid Coordinate Ocean Model (HYCOM) (11).
The vertical grid is composed of 49 total levels: 34 terrain-
following σ levels above 550 m and 15 lower z levels. The
σ-coordinate structure has higher resolution near the sur-
face with the surface layer having 0.5-m thickness. The sim-
ulation uses atmospheric forcing at the sea surface from
the Coupled Ocean/Atmosphere Mesoscale Prediction System
(COAMPS) (12) to generate forecasts of ocean state out to 72 h
in 3-h increments. The observational data assimilated in these
studies are provided by the Naval Oceanographic Office (NAV-
OCEANO) and introduced into NCODA via its ocean data qual-
ity control process. Observations are 3D variational (3D-Var)
assimilated (13) in a 24-h update cycle with the first guess from
the prior day NCOM forecast.
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